
DOCKER MAKES VIRTUALIZATION LIGHT,
EASY, AND PORTABLE; FOLLOW THIS STEP-
BY-STEP GUIDE FROM INSTALLING DOCKER
TO BUILDING A DOCKER CONTAINER FOR
THE APACHE WEB SERVER

Copyright © 2014 InfoWorld Media Group. All rights reserved. • $79

HOW-TO

Get started
Dockerwith

DeepDive
S

H
U

T
T

E
R

S
T

O
C

K

Deep Dive

InfoWorld.com DEEP DIVE SERIES 2PA A S

In this Deep
Dive, we offer
a bundle of
Docker good-
ness: a how-to
explaining how
to get started
with Docker,
an in-depth
review, quick
descriptions
of six Docker
services, and an
interview with
Docker’s CEO.

Even in the age of virtualization, it’s no easy

trick to pack up and move applications where

you need them -- at least it wasn’t until Docker

was invented

Open source keeps shortening the path

between innovation and adoption: Think Hadoop

and big data, OpenStack and cloud, or MongoDB

and NoSQL. Docker, an open source project

that enables you to package any application

in a lightweight, portable container, is rock-

eting toward the all-time speed record.

Why the whirlwind? Because Docker

addresses an overwhelming need: The

ability to package applications in such a way

that they can run anywhere. Sure, you’ve heard

that one before. But the killer part is that there

are few dependencies because Docker runs on

all major versions of Linux, building on the LXC

(Linux Containers) features of the Linux kernel. A

Docker application is entirely self-contained and

deploys itself in its own directory;

the fact that it has its own sandbox

makes it inherently more secure.

Basically, Docker makes

installing a server-side Linux app almost as easy

as installing a mobile app — and you can do it

from the Linux command line in a snap. Among

other things, this enables you to use various

data center automation scripting tools, such as

Puppet or Chef, to roll out large-scale applica-

tion deployments. You can also manage those

deployments from the command line, distrib-

uting application updates quickly and efficiently.

In this Deep Dive, we offer a bundle of Docker

goodness: a how-to explaining how to get started

with Docker, an in-depth review, quick descrip-

tions of six Docker services, and an interview with

Docker’s CEO. We hope you find this package

useful for learning your way around one of the

hottest new projects to arrive in a while.

Eric Knorr is editor in chief at InfoWorld and has

been with the publication since 2003. He is the

former editor of PC World magazine, the creator

of the best-selling The PC Bible, a founding editor

of CNET, and a veteran of several dot-com follies.

Eric has received the Neal and Computer Press

Awards for journalistic excellence.

Introduction

Deep Dive

2InfoWorld.com DEEP DIVE SERIES D O C K E R

BY ERIC KNORR

http://docs.docker.com/installation/
http://en.wikipedia.org/wiki/LXC
http://en.wikipedia.org/wiki/LXC
http://www.infoworld.com/d/data-center/puppet-or-chef-the-configuration-management-dilemma-215279

Deep Dive

InfoWorld.com DEEP DIVE SERIES 3PA A S

If you build a
Docker image
on an Ubuntu
laptop or phys-
ical server, you
can run it on
any compat-
ible Linux,
anywhere.

Docker is an open source framework

that provides a lighter-weight type of

virtualization, using Linux containers

rather than virtual machines. Built on

traditional Linux distributions such as

Red Hat Enterprise Linux and Ubuntu,

Docker lets you package applications

and services as images that run in

their own portable containers and can

move between physical, virtual, and

cloud foundations without requiring

any modification. If you build a Docker

image on an Ubuntu laptop or physical server, you can run it on any compatible Linux, anywhere.

In this way, Docker allows for a very high degree of application portability and agility, and it lends

itself to highly scalable applications. However, the nature of Docker also leans toward running a single

service or application per container, rather than a collection of processes, such as a LAMP stack. That is

possible, but we will detail here the most common use, which is for a single process or service.

Thus, in this guide, we’ll install the Apache Web server into a Docker container and investigate how

Docker operates along the way.

Installing Docker
We’ll use Ubuntu as the foundation of our Docker build. The Docker team

itself uses Ubuntu for development, and Docker is supported on Ubuntu

Server 12.04, 13.04, 13.10, and 14.04. The installation steps are slightly different

for each version, so we will cover them all here.

From a fresh installation of Ubuntu 12.04, we will need to follow these steps to

make sure we have the proper kernel version and associated headers:

$ sudo apt-get update
$ sudo apt-get install linux-image-generic-

lts-raring linux-headers-generic-lts-raring

Get started with Docker

Deep Dive

D O C K E R InfoWorld.com DEEP DIVE SERIES 3

Docker makes virtualization light, easy, and portable; follow this
step-by-step guide from installing Docker to building a Docker
container for the Apache Web server
BY PAUL VENEZIA

S
H

U
T

T
E

R
S

T
O

C
K

[HOW-TO]

Deep Dive

4InfoWorld.com DEEP DIVE SERIES D O C K E R

The above commands will install the Linux 3.8 kernel from Ubuntu 13.04. Then we need to reboot:

$ sudo reboot

We can then proceed to the Docker installation steps below.

Ubuntu 13.04 and 13.10 may need the AUFS (Another Union File System) package installed.

To do so, enter these commands:

$ sudo apt-get update
$ sudo apt-get install linux-image-extra-’uname -r’

The remaining steps to install Docker on Ubuntu 12.04, 13.04, or 13.10 are the same for all three.

We can either run a script Docker provides, or we can follow the procedure step by step. To use the

script, we enter these commands:

$ sudo apt-get install curl
$ curl -s https://get.docker.io/ubuntu/ | sudo sh

Otherwise, we can enter the commands manually. First, we will most likely have to install HTTPS

support for APT:

$ sudo apt-get install apt-transport-https

Then, we enter the following commands to add the Docker repository keychain, add the APT

source, and install Docker:

$ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-
keys 36A1D7869245C8950F966E92D8576A8BA88D21E9

$ sudo sh -c “echo deb https://get.docker.io/ubuntu docker main > /
etc/apt/sources.list.d/docker.list”

$ sudo apt-get update
$ sudo apt-get install lxc-docker

The update may take a while depending on the speed of your Internet connection, but barring an

error, we should now have Docker installed on our Ubuntu 12.04, 13.04, or 13.10 system.

Installation on Ubuntu 14.04 is much simpler, requiring only three commands:

$ sudo apt-get update
$ sudo apt-get install docker.io
$ sudo ln -sf /usr/bin/docker.io /usr/local/bin/docker

After installation, we can test our Docker install:

$ sudo docker run -i -t ubuntu /bin/bash

This command will download the generic Docker Ubuntu image and run the /bin/bash

command within that container. You will see the hostname change on the prompt to something like

root@216b04387924:/#.

Deep Dive

5InfoWorld.com DEEP DIVE SERIES D O C K E R

You can type exit to leave the Docker container.

One last change we may need to make is to allow for packet forwarding in Ubuntu’s UFW firewall

if it’s in use. We can check this by running the following:

$ sudo ufw status

If the above command returns a status of inactive, we can skip this step. Otherwise, we will need

to edit the UFW configuration file /etc/default/ufw and change the policy for forwarding from DROP to

ACCEPT. To do this using the Nano editor, enter the following:

$ sudo nano /etc/default/ufw

Also, change this:

DEFAULT_FORWARD_POLICY=”DROP”

To this:

DEFAULT_FORWARD_POLICY=”ACCEPT”

Save the file, then run:

$ sudo ufw reload

Understanding repositories, images, and containers
You should now have a functional Docker installation on your server. You can test it and get basic

information using the docker info command:

$ sudo docker info
Containers: 2
Images: 23
Storage Driver: aufs
 Root Dir: /var/lib/docker/aufs
 Dirs: 27
Execution Driver: native-0.1
Kernel Version: 3.8.0-39-generic
WARNING: No swap limit support

The output of the docker info command shows the number of containers and images, among

other pertinent information.

Docker containers are much more efficient than hardware-emulated virtual machines. When a

container is not running a process, it is completely dormant. You might think of Docker containers as

self-contained processes -- when they’re not actively running, they consume no resources apart from

storage. You can view active and inactive containers using the docker ps command:

$ sudo docker ps -a # This command will show all containers on the
system

$ sudo docker ps # This will show only running containers

You can view all available commands by simply entering docker:

Docker
containers are
much more
efficient than
hardware-
emulated
virtual
machines.

Deep Dive

6InfoWorld.com DEEP DIVE SERIES D O C K E R

COMMANDS:

attach Attach to a running container

build Build a container from a Dockerfile

commit Create a new image from a container’s changes

cp Copy files/folders from the containers filesystem to the host
path

diff Inspect changes on a container’s filesystem

events Get real-time events from the server

export Stream the contents of a container as a tar archive

history Show the history of an image

images List images

import Create a new filesystem image from the contents of a
tarball

info Display system-wide information

inspect Return low-level information on a container

kill Kill a running container

load Load an image from a tar archive

login Register or Login to the docker registry server

logs Fetch the logs of a container

port Lookup the public-facing port which is NAT-ed to
PRIVATE_PORT

ps List containers

pull Pull an image or a repository from the docker registry
server

push Push an image or a repository to the docker registry
server

restart Restart a running container

rm Remove one or more containers

rmi Remove one or more images

run Run a command in a new container

save Save an image to a tar archive

search Search for an image in the docker index

start Start a stopped container

stop Stop a running container

tag Tag an image into a repository

A self-sufficient runtime for Linux containers.

Usage: docker [OPTIONS] COMMAND [arg...]
-H=[unix:///var/run/docker.sock]: tcp://host:port to bind/connect to

or unix://path/to/socket to use

You can pull Docker images into the local cache to speed up the creation of containers. You can do that

with the docker pull command, which will download all Ubuntu images from the Docker repository.

$ sudo docker pull ubuntu

A full, searchable list of images and repositories is available on the Docker Hub.

It’s important to understand the relationships between images, containers, and the pull and push

processes.

Docker containers are built from images, which are essentially shells of operating systems that

contain the necessary binaries and libraries to run applications within a container. By pulling down an

image repository, you are downloading multiple versions of an operating system. For instance, using

the docker pull ubuntu command above, six Ubuntu release images are downloaded and tagged with

their numeric version as well as their name, like so:

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu 13.10 5e019ab7bf6d 11 days ago 180 MB
ubuntu saucy 5e019ab7bf6d 11 days ago 180 MB
ubuntu 14.04 99ec81b80c55 12 days ago 266 MB
ubuntu latest 99ec81b80c55 12 days ago 266 MB
ubuntu trusty 99ec81b80c55 12 days ago 266 MB

Then, simply choose an image to create a container based on it. By default, using ubuntu as the

image name will choose the latest version of the OS. By specifying the image ID or repository and tag,

you can build a container from a specific release. Thus, to run the shell we ran as a test before, but in a

container built on the Ubuntu 13.10 release, we would run:

$ sudo docker run -i -t 5e019ab7bf6d /bin/bash

Alternately, you can use the repository:tag syntax:

$ sudo docker run -i -t ubuntu:saucy /bin/bash

Both commands will build a new container running a root shell based on the Ubuntu 13.10 release

image.

You create a container by using an image as a baseline, then you can begin customizing the

container for your desired application. Once you’ve customized the container, you can commit that

container to the system, and those changes will become permanent. The resulting container can then

be used on any Docker system.

It’s important to note that Docker only stores the deltas, or changes, in images built from other

images. As you build your own images, only the changes you make to the base image are stored in the

new image, which links back to the base image for all of its dependencies. Thus, you can create images

that have a virtual size of 266MB, but take up only a few megabytes on disk, due to this efficiency.

Fully configured containers can then be pushed up to a central repository to be used elsewhere in the

organization or even shared publicly. In this way, an application developer can publish a public container for

an app, or you can create private repositories to store all the containers used internally by your organization.

Deep Dive

7InfoWorld.com DEEP DIVE SERIES D O C K E R

It’s important
to note that
Docker only
stores the deltas,
or changes, in
images built
from other
images.

https://registry.hub.docker.com/

Deep Dive

InfoWorld.com DEEP DIVE SERIES 8D O C K E R

Building our Apache container
Now that we have a better understanding of how images and containers work, let’s set up our Apache

Web server container and make it permanent.

First, we need to build a new container. There are a few ways to do this, but since we have a few

commands to run, let’s start a root shell in a new container:

$ sudo docker run -i -t -name apache_web ubuntu /bin/bash

This creates a new container with a unique ID and the name apache_web. It also gives us a root

shell because we specified /bin/bash as the command to run. Let’s install the Apache Web server using

apt-get:

root@d7c8f02c3c8c:/# apt-get install apache2

The normal apt-get output will appear, and the apache2 package will be installed in our new

container. Once the install has completed, we’ll start Apache, install curl, and test the installation, all

from within our container:

root@d7c8f02c3c8c:/# service apache2 start
root@d7c8f02c3c8c:/# apt-get install curl
root@d7c8f02c3c8c:/# curl http://localhost

Following the last command, you should see the output of the default Apache page. This means

our Apache server is installed and running in our container.

In a production environment, we would then configure Apache to our requirements and install

a Web application for it to serve. Additionally, Docker allows external directories to be mapped to

a container, so we could simply store a Web app externally and have it appear within our Docker

container.

There is one thing to always keep in mind about Docker: If a process moves into the background,

like a normal system daemon, Docker will stop the container. Therefore, we need to construct a simple

script to run Apache in the foreground in order to keep our container from exiting as soon as it starts.

Thus, let’s create the script, startapache.sh, in /usr/local/sbin:

root@d7c8f02c3c8c:/# nano /usr/local/sbin/startapache.sh

In the startapache.sh file, we add these lines:

#!/bin/bash
. /etc/apache2/envvar
/usr/sbin/apache2 -D FOREGROUND

We then save the file and make it executable:

root@d7c8f02c3c8c:/# chmod +x /usr/local/sbin/startapache.sh

All this small script does is bring in the appropriate environment variables for Apache and start the

Apache process in the foreground.

We can now exit the container by typing exit.

Once we exit the container, the container will stop. We then need to commit the container to save

our changes:

There is one
thing to always
keep in mind
about Docker:
If a process
moves into
the back-
ground, like a
normal system
daemon,
Docker will stop
the container.

Deep Dive

InfoWorld.com DEEP DIVE SERIES 9D O C K E R

$ sudo docker commit apache_web local:apache_web

The commit will return a unique ID, and we will have saved our container as a new image. The

argument local:apache_web will cause the commit to be placed in a local repository named local

with a tag of apache_web.

We can see this by running the command sudo docker images:

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
local apache_web d95238078ab0 4 minutes ago 284.1 MB

Now that we have our image, we can start our container and begin serving pages.

Before we do, however, we have to take a moment to discuss how Docker handles networking.

When Docker starts, it creates a bridging interface to handle all of the container networking. It chooses

a subnet not already in use on the host system, then assigns IP addresses to containers within that

subnet, linked to that bridge. Thus, if you want a container to communicate with the outside world,

you will need to map ports between the host and the container. We can do this on the command line

when we start the new container.

For our Apache server, we will map TCP port 8080 on the host to the new container on port 80.

We can do this and start Apache in the container with one command:

$ sudo docker run -d -p 8080:80 --name apache_web local:apache_web /
usr/local/sbin/startapache.sh

The above command will launch a new container, running the Apache service, and mapping

TCP port 8080 on the host to TCP port 80 on the container. We should now be able to point a Web

browser at our host on TCP port 8080 and see the Apache page running on our new Docker container.

The URL would be http://<IP of Docker host>:8080.

We can see the status of the container and the TCP port mappings by using the docker ps command:

We can also use the docker port command to look up the mappings:

$ sudo docker port apache_web 80
0.0.0.0:8080

Note that we could use the -P option on the docker run

command to publish all open ports on the container to the host

and map a random high port such as 49153 back to port 80 on

the container. This can be used in scripting as necessary.

At this point we have a fully functional Docker container

running our Apache process. When we stop that container it

will remain in the system and can be restarted at any time.

$ sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
e93376bf906b local: /usr/lo cal/sbin/star 5 seconds ago Up 5 seconds 0.0.0.0:8080->80/tcp apache_web
 apache_web

If you want
a container
to communi-
cate with the
outside world,
you will need
to map ports
between the
host and the
container.

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 0D O C K E R

Automating builds with Dockerfiles
Dockerfiles are text files we can store in our repository to automate the creation of Docker images. By

creating Dockerfiles that contain the specifications for our containers, we can facilitate the hands-free

creation of containers like the one we built in the above exercises. For example, a Dockerfile might

contain these lines:

FROM ubuntu:14.04

RUN apt-get update
RUN apt-get install -y curl

ENTRYPOINT [“/bin/bash”]

We can save this as a file called dftest in our local directory, then run the following:

$ sudo docker build -t=”dftest” .

Docker will build a new image based on the ubuntu:14.04 image, do an apt-get update, use

apt-get to install curl, and set the command to run as /bin/bash. We could then run:

$ sudo docker run -i -t dftest

Voilà, we have a root shell on a new container built to those specifications.

There are numerous options that can be used in a Dockerfile, such as mapping host directories to

containers, setting environment variables, and even setting triggers to be used in future builds.

A full list of Dockerfile operators can be found on the Dockerfile Reference page.

Of course there’s much more to Docker than we’ve covered in this guide, but this should give you

a basic understanding of how Docker operates, the key Docker concepts, and how to build functional

containers. You can find more information on the Docker website, including an online tutorial. A guide

with more advanced examples can be found at PayneDigital.com.

Paul Venezia is senior contributing editor of the InfoWorld Test Center and writes The Deep End blog.

You can find
more informa-
tion on the
Docker website,
including an
online tutorial.
A guide with
more advanced
examples can be
found at
PayneDigital.
com.

http://docs.docker.com/reference/builder/
http://docs.docker.com/
http://docs.docker.com/
http://paynedigital.com/articles/2013/11/introduction-to-docker
http://www.infoworld.com/d/data-center/blogs

Deep Dive

1 1

If you’re on the lookout for an easier way to

migrate apps and services from development

to production, or from one server environment

to another, then you may already be aware of

Docker. The Linux container solution has made

waves for a while now, even as it has been

widely viewed as not quite ready for production.

The Docker team has been working steadily at

finalizing a release that it considers to be produc-

tion ready, and it appears to have reached that

goal with the introduction of Docker 1.0.

Major enhancements in Docker 1.0 push it

toward this production-ready state. Docker can

now directly connect to host network interfaces

rather than using the internal bridging required in

earlier versions. Linked Docker containers can find

each other by hostname, with the hosts file modi-

fied to reflect the correct host. Also, Docker plays

nice with SELinux, supports greater monitoring,

offers time-stamped logs for each container, and

supports registry mirrors with multiple endpoints,

which improves redundancy and reliability.

These are all notable advancements, and they

make Docker substantially more relevant across

multiple use cases and production scenarios. Plus,

it will cost you nothing to try. Docker is available

free under the Apache 2.0 open source license.

Docker in a nutshell
Like a virtual machine, but much more light-

weight, a Docker container allows you to move

applications and services seamlessly between host

servers. In addition, it incorporates versioning

and image management tools that permit simple

scaling and elasticity of applications and services

across physical servers, virtual servers, or cloud

instances. About all that’s required from the

underlying host is that it run a recent version (3.8

or above) of the Linux kernel that supports the

LXC (Linux Container) features Docker relies on.

The first production-ready version of the open source Linux
container engine irons out networking and other wrinkles
BY PAUL VENEZIADocker can

now directly
connect
to host
network
interfaces
rather than
using the
internal
bridging
required
in earlier
versions.

D O C K E R InfoWorld.com DEEP DIVE SERIES

Docker 1.0 is ready for prime time

S
H

U
T

T
E

R
S

T
O

C
K

[REVIEW]

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 2D O C K E R

As an example, you could create a

Docker container that does nothing but run a

memcached service or an Apache Web server.

This container would be built from a standard

Linux base, such as Ubuntu or CentOS, and the

desired service would be installed and configured

much as it would on any Linux system. However,

once built into a container, you could check that

container in to Git version control, check it out on

any other system, and have it immediately start

and become a functional, production service.

Thus, that memcached instance could be

replicated and run on a virtual server, a physical

server, an Amazon cloud instance, or anywhere

else you can run Docker. You don’t have to worry

about service dependencies between hosts,

nor must you concern yourself with application

installations, emulating hardware, or any of the

trappings of traditional virtualization. You just

need to start your properly built container where

you want it to run.

How Docker works
Docker works by creating containers based on

Linux system images. Much like other paravir-

tualization tools such as Virtuozzo, all instances

fundamentally run on the host system’s kernel,

but are locked within their own runtime envi-

ronment, separated from the host’s environ-

ment.

When you start or create a Docker container,

it is active only if active processes are running

within the container. If you start a daemon-

ized process, the container will exit immediately

because the process ceases to be active in the

foreground. If you start a process in the fore-

ground, the container runs normally until that

process exits. This is unlike other paravirtualiza-

tion tools that set up essentially “normal” virtual

server instances in airlocked environments on the

same host. Those instances persist even without

active foreground processes.

Docker can be installed on most major

Linux distributions, as well as on Mac OS X and

Windows, albeit the last two only via the use of

emulated virtual machines as hosts.

In most cases, installing the Docker runtime

on a host is a very simple process, requiring

only the use of normal package management

commands on many Linux distributions. You’ll

find a very complete set of installation instruc-

tions for a wide variety of Linux distributions and

cloud services, as well as Mac and Windows, on

the Docker website.

Once Docker is installed, we can create a

container with a simple command:

$ sudo docker run -i -t ubuntu /
bin/bash

This command tells Docker to download

the latest Ubuntu image (if not already present

on the host) and run the /bin/bash command

within the container. This command will execute

within the new container as root, and we’ll be

presented with a root command prompt running

in our new container:

root@2e002f3eb1b2:/#

From here we can do just about everything

you might expect from a new Linux installation.

We can run apt-get update, install new soft-

ware, configure that software, write scripts, and

use the container more or less like we would

any other Linux server instance. Except, when

we exit from the command line, the container

stops running. If we had started an Apache

process and begun serving Web pages from the

container, our Web server would stop. Thus, it’s

generally a good idea to build your containers

for a single service only, rather than an applica-

tion stack. You can run multiple services on a

single container, but it’s more challenging than it

perhaps should be.

Test Center Scorecard

8.1
VERY GOOD

Docker 1.0 8 8 8 8 9

 30% 20% 20% 20% 10%

V
a
lu

e

S
ca

la
b

il
it

y

In
te

ro
p

e
ra

b
il

ty

E
a
se

 o
f

u
se

U
sa

b
il

it
y

O
v
e
ra

ll
 S

co
re

http://docs.docker.com/

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 3D O C K E R

Working with Docker
Docker is a command-line tool that provides all

of the required tools in the central “docker”

executable. This makes it very simple to use

overall. Some examples would be checking the

status of running containers:

Or checking the list of available images and

their versions:

Another example would be to show the

history of an image:

 The above command shows a handy

shortcut in the command-line interface, in that

you only need to specify the first few characters

of the image ID to pull it up. You can see that

only “d95” was required to show the history of

the image d95238078ab0.

You may note that the size of that image

is quite small. This is because Docker builds

deltas out from the parent image, storing only

the changes per container. Thus, if you have

a 300MB parent image, your container and

resulting image might be only 50MB in size, if

you installed 50MB of additional applications or

services within the container.

You can automate the creation of Docker

containers with Dockerfiles, which are files that

contain specifications for single containers. For

instance, you could create a Dockerfile to set up

an Ubuntu container with proper networking,

run a bevy of commands within the new

container, install software, or perform other

tasks, then start the container.

Container networking
Networking in earlier versions of Docker was

based on host bridging, but Docker 1.0 includes

a new form of networking that allows a

container to connect directly to the host Ethernet

interfaces. By default, a container will have a

loopback and an interface connected to the

default internal bridge, but can also be config-

ured for direct access if desired. Naturally, direct

access is faster than bridging.

Nevertheless, the bridging method is very

useful in many cases and is accomplished by the

host automatically creating an internal network

adapter and assigning a subnet to it that is

unused on the host itself. Then, when new

containers attach to this bridge, their addresses

are assigned automatically. You can configure a

container to attach to a host interface and port

when it starts, so a container running Apache

may start and connect to TCP port 8080 on

the host (or a randomized port), which is then

directed to port 80 on the container itself.

Through the use of scripting and administra-

tive control, you could start Docker containers

anywhere, collect the port they’re using, and

communicate that to other parts of the applica-

tion or service stack that need to use the service.

Docker in the real world
In the right hands, Docker has been ready for

production for at least a few releases, and the

release of v1.0 should result in more eyeballs on

the project. The learning curve for Docker should

be relatively short for seasoned Linux administra-

tors, but you can easily try it out for yourself at

Docker’s online demo.

Docker is a very good example of a work-

able, foundational, back-end infrastructure

component that possesses plenty of utility and

functionality for Linux admins and architects,

but will be lost on those used to point-and-click

interfaces. That’s not necessarily a bad thing.

Docker still has many places to go from here

(e.g. image versioning and private registries) and

many areas that could use streamlining (e.g.

networking). But this 1.0 release is quite enough

to get you started.

Paul Venezia is senior contributing editor of the

InfoWorld Test Center and writes The Deep End

blog.

https://www.docker.com/tryit/
http://www.infoworld.com/d/data-center/blogs

Deep Dive

StackDock.com
For $5 a month, StackDock offers you Docker as a service:

the ability to upload a Dockerfile and deploy it on servers

sporting 20GB of SSD-backed storage and 1GB RAM per

instance. Dockerfiles can be created directly on the service

itself, or they can be prepared offline and uploaded.

StackDock’s platform is being upgraded as of this writing

(no new signups are being accepted), but planned features

include autoscaling, more data centers both inside and

outside the United States, and automatic backup of

containers to Amazon S3. StackDock was created by

Copper.io, a provider of tools and support in deploying,

operating, and monitoring apps in the cloud.

Docker is primed to take IT by storm -- and here are six new services
to make the most of the open source app-container technology
BY SERDAR YEGULALP

6 Docker services
making a splash

D O C K E R

Docker is fast becoming one of the hottest technologies under development. Released just a year ago,

the open source project for creating virtualized application containers has already caused major cloud

players, from Red Hat to Google, to rethink how applications can be delivered, run, and managed,

especially in cloud environments.

For the uninitiated, Docker allows developers to take their applications and turn them into

“containers” that can then be moved between systems and managed as if they were themselves VMs.

Docker is evolving rapidly, and so is its ecosystem, which includes a slew of new services that

promise to help you get the most out of Docker. Here’s a look at six promising entrants and the Docker

services they provide.

InfoWorld.com DEEP DIVE SERIES 1 4

http://stackdock.com/
http://copper.io/

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 5D O C K E R

Orchard
If you like Docker but don’t like the heavy lifting

of setting up servers or VMs, Orchard promises

“a Docker host in the cloud that works just like

a local one.” Orchard-hosted Docker containers

are controlled by a command-line interface that

behaves exactly like a local instance of Docker.

In fact, Orchard simply takes the existing Docker

client and redirects its behavior into Orchard’s

own cloud, so little or no retraining is needed.

Prices start at $10 per month for 512MB of

RAM, 20GB of SSD-backed storage, and one

core; the top end is $160 per month for 8GB of

RAM, a 60GB SSD, and four cores.

Tutum
Billed as a “CaaS” (container as a service), Tutum

allows you to deploy containers from either the

Docker Public Index or a private Docker registry

(provided for free by Tutum), with controls

provided either through a convenient GUI or

an open source CLI. Many popular open source

projects -- MySQL and WordPress, for example --

are already pre-containerized in Tutum as “jump-

starts,” and containers can be linked, monitored,

and automatically scaled across multiple hosts

and data centers. Prices start at $4 per month for

a container with 256MB of RAM and 0.25 ECU

(Amazon’s CPU metric).

Quay.io
Docker growth can be seen not just in the

number of services that run and manage Docker

containers, but also in the growing array of

services that host and share them. Quay.io is

one such Docker hosting outfit, offering both

free public repositories and private hosting

plans that start at $12 per month. Aside from

offering access controls for teams and detailed

change lists for repositories, Quay provides build

features, too: Dockerfiles stored in GitHub can

be automatically pulled in and built whenever

you commit a change.

Drone.io
Integration servers, such as Jenkins, are what

dev teams usally employ to automate testing

as changes are applied, also known as CI

(continuous integration). Drone.io offers CI as a

service and uses Docker as a cornerstone for its

operations. Pre-built Docker images are offered

for “more than 12 languages and nearly every

major database,” and you can swap in a custom

Docker image if you need to. Drone.io is free

for open source projects; private projects get

their first 50 builds free as well. Various plans

are offered, starting at $25 per month for five

private projects. The core software, written in

Go, is also available as an open source project.

https://www.orchardup.com/
https://www.tutum.co/
http://docs.docker.com/userguide/dockerlinks/
https://quay.io/
https://drone.io/
http://blog.drone.io/2014/2/5/open-source-ci-docker.html

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 6D o c ke r

Shippable
Shippable is another organization offering

continuous integration and continuous deploy-

ment in the cloud, coming off as a mix of

features from both Quay and Drone. Ship-

pable’s current use of Docker is limited to “build

minions” -- Docker-based containers -- to run

workloads, although the documentation hints

that more future functionality will be built for

Shippable around Docker. The core version of the

service, which includes unlimited public and five

private repositories, is free; other editions of the

service start at $10 a month.

Serdar Yegulalp is a senior writer at InfoWorld,

focused on the InfoWorld Tech Watch news analy-

sis blog and periodic Test Center reviews. Before

joining InfoWorld, he wrote for the original Win-

dows Magazine, Information Week, the briefly

resurrected Byte, and a slew of other publications.

https://www.shippable.com/
http://www.infoworld.com/blogs/infoworld-tech-watch
http://www.infoworld.com/blogs/infoworld-tech-watch

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 7D O C K E R

Few enterprise technologies have had such

a quick ramp-up as Docker. Not yet in its 1.0

version, Docker is already wildly popular, because

it enables you to package up any application in

a lightweight, portable container and move it to

any Linux server -- a much more agile proposi-

tion than moving VMs around.

Recently, InfoWorld Executive Editor Doug

Dineley, Senior Writer Serdar Yegulalp, and I sat

down with Docker CEO Ben Golub to talk about

the phenomenal early success of Docker and

how it promises to disrupt enterprise application

deployment.

InfoWorld: How does it feel to be the “it”

technology?

Golub: I’ve been around for a long time -- and

have not been “it” like 22 times. First I was CEO

of Gluster. I was CEO of Plaxo before that. Also

eight years at VeriSign, a couple of years at Avid ...

InfoWorld: You really have been around.

Golub: Yeah. The people at Docker are much

closer to my kids’ ages than they are to mine.

I feel very fortunate because we certainly

happened upon a good solution.

InfoWorld: You stepped in after the tech-

nology was developed?

Golub: Yes. The company was first called

dotCloud and was founded in 2011 by Solomon

Hykes as a public PaaS, one of the first that

handled multiple languages. The company that

developed that technology ultimately became

Docker.

At the beginning of 2013, they realized the

public PaaS business was a pretty hard business

to be in, but the technology could be really inter-

esting. I came on board to advise them about

open source -- and then as CEO. Docker itself

turned a year old on March 20, and my one-year

anniversary was April 10. It’s been a whirlwind.

InfoWorld: Why do you think Docker has

taken off in such a spectacular way?

Golub: I think we’re solving a really big problem

that many people are experiencing. And it’s

The cloud era is in full swing, and Docker provides an answer
to its greatest hazard: platform lock-in. An exclusive interview
with Docker CEO Ben Golub
BY ERIC KNORR

 Docker CEO:
Our container goes anywhere
[Q&A]

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 8

It’s also revo-
lutionizing
how things can
get deployed,
because you’re
not trying to
treat an applica-
tion as if it were
a server and
moving around
something big
and bulky and
hard to change.

being heightened by almost every major trend,

whether it’s cloud or scale-out or the need for

things to be developed iteratively.

When I got started in the business, applica-

tions were long-lived, monolithic, built on a

single stack, and deployed to a single server.

Today, development is iterative and constant,

applications are loosely coupled components

built on a multitude of different stacks, and

they run on multitudes of servers. Somehow,

the same complex application built on different

stacks has to run in testing, staging, and produc-

tion; scale across a cluster; move to a cloud; go

to a customer; work on a VM; etc.

InfoWorld: That’s a hard problem.

Golub: Yes, it is. What Docker basically does is

let you take any application and its dependen-

cies, put it into a lightweight container, and then

run it anywhere -- or anywhere there is a Linux

server. It’s a simple yet revolutionary idea that I

think the world has been waiting for, because

the current technology is a real mismatch with

how people want to run things.

InfoWorld: How do you envision this new

container disrupting the market?

Golub: I think it disrupts several things. First of

all, at a very basic level, you go from a process

of going from development through testing and

staging and production that today generally

takes weeks, with things breaking at every stage

and fingers being pointed, to something that can

now take minutes and work 90 percent of the

time. And in the 10 percent of the time it isn’t

working, it’s really clear whether it’s a develop-

ment issue or an ops issue. So it’s revolutionizing

how people are building code.

It’s also revolutionizing how things can get

deployed, because you’re not trying to treat an

application as if it were a server and moving

around something big and bulky and hard to

change. Instead, you’re deploying lightweight

containers that can be deployed in milliseconds

anywhere -- and destroyed just as easily, or

updated just as easily, which is a revolution in

deployment.

I think we’re also revolutionizing how appli-

cations get managed. Because the container is

so lightweight and contains its application and

can get built directly from source, you know

exactly what’s running where, what version it is,

and you can update it. So you solve three really

big problems while at the same time separating

what rightfully belongs with application manage-

ment from infrastructure management.

InfoWorld: Where did the inspiration for the

technology come from?

Golub: Container technology is not new.

Almost every PaaS out there was using some

kind of container technology, but containers

were hard to use and they weren’t portable

between different environments. Solomon

Hykes, who founded the company, had this

insight: Wow, if we actually make this available

to developers and we make it easy to migrate

between different environments, this can really

revolutionize the world.

It was clear that we would do this as open

source. Then we could get it integrated into all

the new stacks and have something that can run

not only on any Linux server, but also easily inte-

grate with DevOps tools, work inside OpenStack,

as well as be adopted by other PaaS vendors and

by cloud guys. And lo and behold, that’s kind of

what’s happened.

InfoWorld: How is your container technology

different?

Golub: The analogy we like to use is the

shipping container. It used to be that anything

you ever tried to ship was in some specialized

container: Coffee beans were in bags and car

parts were in crates, and you had to unload

and reload every time you sent from a ship to a

train to a truck to a crane. Things would interact

badly, like if you were shipping bananas next to

animals.

The shipping container revolutionized all that

by being a standard size and shape and having

hooks and holes in all the same places. Suddenly,

anything can go inside it, you seal it up, and the

same box goes from the ship to the train to the

truck to the crane without being changed. World

trade was revolutionized because, suddenly, all

these things were the same. The manufacturer

doesn’t really care whether it’s going to go on a

D O C K E R

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 9

We’re building
solutions that
make it easy to
link containers
together,
to migrate
containers
between
different hosts,
and to see
what’s running
where.

D O C K E R

boat or a train. He doesn’t even have to know in

advance because it’s inside the container.

So that’s kind of what we’ve done. Basically,

you just put the application in the container and

run it directly on the host. There’s no guest OS.

It’s very lightweight. It’s the same thing that you

do with an Android phone and its applications,

only now it works in the back office as well.

InfoWorld: To what degree do you feel this

disrupts platform lock-in?

Golub: We make it really easy to ... create

things and move them around. So people who

built a business model based on keeping you

locked in through some artificial means will have

problems. If you are an infrastructure provider

and you provide the best infrastructure with great

security and great uptime at a reasonable price,

the fact that it’s easy for people to move stuff to

you using Docker should be a good thing. We

lower the walls and people who have the best

garden will attract people. Trying to have a walled

garden in this era isn’t going to work.

InfoWorld: You’re not currently a container for

every ship.

Golub: We are a container that will work on

any Linux server. It doesn’t matter whether it’s

Red Hat or Ubuntu. It doesn’t matter whether

it’s physical or virtual. It doesn’t matter if it’s

Amazon or SoftLayer or Rackspace. It doesn’t

matter if it’s staging, testing, or production. So

we’re on a lot of ships and trains and trucks and

cranes.

InfoWorld: All the Linux distros are falling in

line?

Golub: Yeah. Actually, we could work on them

before. Now we’re getting baked in with them.

We’ll be shipped with RHEL and shipped with

Ubuntu and shipped with Debian; we’re shipped

with Amazon Linux AMI and we’re in Open-

Stack. That’s just a matter of making it easier.

Before, people had to download a Docker host.

InfoWorld: Will you stop with Linux?

Golub: There is no fundamental reason why

we have to stay in Linux. We can also manage

BSD Jails or Solaris Zones, which are sort of the

equivalent low-level technology for Solaris, and

we have some stuff in the works for .Net as well.

InfoWorld: Really? For .Net?

Golub: It won’t be this year, but ...

InfoWorld: That’s going to be interesting. A lot

of people have been saying there’s no equivalent

technology for Windows, and they don’t think

there needs to be one because the software

management situation is very different.

Golub: Yeah. People don’t tend to really get it.

The other thing that I think is important is that

it’s not just technology. It’s also the ecosystem.

So, for example, if you go to Docker today you’ll

find that there’s an index with over 9,000 appli-

cations that were created in Docker. You’ll find

solutions, some official and some not official, to

work with Chef and Salt and Puppet and Ansible

and Jenkins and Travis.

InfoWorld: How else do you plan to extend

the functionality of Docker?

Golub: We’re building solutions that make

it easy to link containers together, to migrate

containers between different hosts, and to see

what’s running where. So that’s a lot of our

long-term business model, sort of providing the

vCenter equivalent for Docker. In essence, as an

open-source company, we’ve given away ESX.

And the additional value will be in the orchestra-

tion and management layer.

InfoWorld: Is there a timeframe for when

some of these tools will be available?

Golub: A lot of the very basic things that enable

you to link containers together are already out

there. The tools that make it possible to orches-

trate between different containers in a data

center are already there. We are going to be

announcing a lot of things at DockerCon.

InfoWorld: Has the success of Docker

exceeded your expectations?

Golub: It has completely exceeded our expecta-

tions. We thought it would take several years

to catch on, that developers would like it but it

would take a while for sysadmins to embrace it

as well, and even longer for more conservative

Deep Dive

InfoWorld.com DEEP DIVE SERIES 2 0

We’re thrilled
by the fact that
we now have
400 contribu-
tors to the
project.

D O C K E R

organizations to adopt it. And what has just

astounded us is that everything in our multiyear

plan has kind of moved up.

We knew developers would love us, and

we’re just thrilled that they’ve loved us this much

and have piled on this quickly. We’re thrilled by

the fact that we now have 400 contributors to

the project. Our company is 30 people and a

turtle. So having that is spectacular. We’ve been

amazed that sysadmins have embraced this

almost as enthusiastically as developers. We’re in

production at lots of places even though we’re

not yet at Docker 1.0.

InfoWorld: Docker 1.0 is next month [June

2014], isn’t it?

Golub: Either next month or probably at Dock-

erCon.

InfoWorld: What, for you, is the big thing that

will signify 1.0?

Golub: There were a few really big things that

we wanted to achieve before we got to Docker

1.0. One is that with every release we’ve been

shrinking what’s in the core and building a plug-

gable framework around it. So changes that we

want to make or new functionality we want to

add, like networking and storage and things like

that, can be delivered as plug-ins rather than

requiring people to upgrade. At 1.0, we will

be at a place where the core doesn’t need to

change that rapidly.

Secondly, quality and bake time and docu-

mentation. People have been using Docker in

production since 0.5. But when a more conser-

vative company adopts it, we don’t want them

to struggle with documentation or with rough

edges. And finally, we want to be able to offer

commercial support. So when we announce

Docker 1.0, we’ll be confident that it’s a version

that can be supported for the long term.

InfoWorld: So in terms of the business, you

would say you’re in “investment mode” now?

Golub: Certainly there are more dollars leaving

every month than are coming in. We do sell

some t-shirts, and we actually just launched

hosted private registries. So what I will tell you

is that the growth rate has been phenomenal --

but starting from zero, growth is pretty easy.

But the business model is fairly straightfor-

ward. What we do is very similar to the Red Hat

model: providing commercial support. But we

also think that there is a natural set of managed

services around orchestration, management, and

monitoring that makes sense this year. And at

some point in 2015 we know enterprises that

want those things delivered on premise, and

we’ll do that as well.

InfoWorld: So manage the services through

the cloud?

Golub: Yeah, right. Through a hosted service

that we provide to make it easy to publish, to

find, to download, to sign and create, to move

things between different clouds, to move things

that have been on-premise to the cloud. And

there are actually a lot of services like New Relic

and others that have sort of established this

model. Enterprises are willing to have certain

management functions provided in the cloud,

provided that the data itself is still resident

on-premise.

InfoWorld: Do you have a sense of the types

of applications people are using Docker for right

now?

Golub: There’re four major areas of interest.

The biggest one, I’ll say, is sort of CI/CD [contin-

uous integration/continuous delivery], generally

speaking. So people who want to be able to

go really quickly from development all the way

through to production. So people like eBay and

others, and RelateIQ and others, talk publicly

about what Docker has done to revolutionize that.

The second major use case is people who are

looking at some kind of a hybrid cloud deploy-

ment, where they’re looking for an easy way to

either develop in private and move to the cloud or

develop in the cloud and move private (or burst

between). And Docker provides a really great

framework for doing that. And now the major

cloud providers are also supporting Docker.

The third major use case we’re seeing is

what’s called big data scale-out, where a VM

was never appropriate. If you’re trying to do

computation across hundreds of machines and

scale out and then scale back just as quickly,

http://www.infoworld.com/t/big-data/new-relic-debuts-splunk-style-analytics-software-238693

Deep Dive

InfoWorld.com DEEP DIVE SERIES 2 1

I could say I
sleep like a
baby — which
means I’m up
screaming. The
pace is going
so rapidly, and
I think the
expectations
that have been
placed on us
are so high
that I really
just want to
make sure that
we do a great
job delivering
against it.

D O C K E R

something really lightweight that’s easy to

create, easy to throw away, is the right model.

The fourth is people who are offering multi-

tenant services and are using Docker as a way

to do that. So this is like Baidu, which is China’s

Google.

InfoWorld: Website hosting?

Golub: It’s actually there for their PaaS. So

they’re creating a PaaS based on Docker. Yandex

did the same thing -- the Google of Russia. And

now the Google of Mountain View is sort of

doing the same type of things.

InfoWorld: So development on the public

cloud is obviously a big part of this momentum.

Golub: Yeah. But I think in general ... a devel-

oper tends to start with a personal project,

stateless, loves it, and then brings it into the

organization for simple apps. And then very

quickly a sysadmin sees it and says: Oh, we could

actually use this in production as well. And then

they start thinking about more complex apps

where each of the components is containerized

and linked together. That’s the general trend that

we’re seeing.

InfoWorld: A foundation for distributed appli-

cations?

Golub: Yeah. Containers not only provide the

right level of abstraction from the application

in the host, but they also provide the right level

of abstraction between containers. So that if

you want to have a complex multitier app, you

can put the application and the database and

the data each in separate containers, and move

them around as appropriate. We’ve provided

the tools that let you orchestrate or define how

containers interact.

InfoWorld: What open source license do you

use?

Golub: We’re Apache. We went as open as we

could. Apache is the most permissive license; it’s

open design.

InfoWorld: You already have quite an

ecosystem out there of people who are doing

stuff.

Golub: There are some 350 projects built on

top of Docker and at least 20 startups that we

know of that are sort of Docker-based. We’re

actually one of the largest projects on GitHub.

InfoWorld: That’s a claim to fame in itself.

Golub: It truly is a community driving this.

Given that 95 percent of the contributors to the

project don’t work for Docker, Inc., we have to

be pretty humble about who’s really driving this

project forward.

InfoWorld: What sort of app deployments is

Docker not good for?

Golub: If you’ve written an app that has specific

requirements on specific features in a specific

version of the kernel, Docker is not going to be

that helpful to you. It’s certainly not designed to

let you run a Mac program on a Windows box

or vice versa. You want to use a VM for that. If

you’re wedded to the notion of state, you want

to be using a VM.

InfoWorld: As CEO of Docker, what keeps you

up at night?

Golub: Work. I could say I sleep like a baby

-- which means I’m up screaming. The pace is

going so rapidly, and I think the expectations

that have been placed on us are so high that I

really just want to make sure that we do a great

job delivering against it.

Eric Knorr is editor in chief at InfoWorld and has

been with the publication since 2003. He is the

former editor of PC World magazine, the creator

of the best-selling The PC Bible, a founding editor

of CNET, and a veteran of several dot-com follies.

Eric has received the Neal and Computer Press

Awards for journalistic excellence.

