
INTRODUCTION

to
Windows
PowerShell

COMPUTERWORLD
November 2015 | www.computerworld.com

®KNOWLEDGE PACK

2 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

THE POWERSHELL scripting language is a
must-have for every Windows administra-
tor nowadays. The most current version of
Windows Server is accessible primarily via
PowerShell and only secondarily via the

server’s GUI.
Plus, it can’t hurt to learn a new way of automating

some of the more manual-intensive processes you do,
including adding or deleting users.

With this guide, you’ll learn everything from
how to get started to more advanced ways of using
PowerShell. And, once you’ve mastered the basics,
we provide plenty of additional resources to help you
learn even more.

So, where to start? That depends on how you like
to learn. If you’re the type of person who wants to
know a lot right away, then our most in-depth infor-
mation is the “Introduction to Windows PowerShell”
book excerpt by Brian Knittel that begins on page 3.

If, however, you want a quicker and more hands-
on type of introduction, check out “PowerShell:
The basics” on page 23; that should have you up and
running in no time.

For more visual folks, check out “9 useful Power-
Shell tools” on page 39, or the scriptshow that shows
how to perform five specific tasks on page 50. And
anyone who already knows something about the lan-
guage but wants to learn even more might check out
our primer on how to use objects starting on page 44.

Whatever your style, we’re hoping there’s some-
thing in here that will suit and that will help you
learn a new skill. Enjoy!

–Johanna Ambrosio, technologies editor

Introduction to Windows
PowerShell

Getting started with
PowerShell: The basics

PowerShell for beginners:
Scripts and loops

9 useful PowerShell tools

Understanding and using
objects in PowerShell

Scriptshow: Performing five
common administrative tasks
using Windows PowerShell

contents

3 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

Introduction to
Windows PowerShell
Microsoft’s Windows PowerShell is, well, powerful,
but also a bit peculiar. Here’s what you need to know
to get started with this robust command and scripting
environment. By Brian Knittel

This article is excerpted from the book Windows 7 and Vista Guide to Scripting, Au-
tomation, and Command Line Tools, copyright Pearson Education, all rights reserved.
Reprinted with permission.

IN 2006, Windows Script Host (WSH) and the Command Prompt shell got a
new sibling when Microsoft released a completely new environment called
Windows PowerShell. PowerShell has some similarities to the older tools: Like
the Command Prompt shell, it lets you type commands interactively as well as
put them into script/batch files, and you can easily use pipes and redirection to

string files and programs together. Like WSH, it provides a powerful object-oriented
programming language for complex scripting.

But PowerShell is a very different, strange animal, and it has powerful features that
go way beyond what WSH and the Command Prompt offer. I show you what I mean
in the following sections.

An Object-Oriented Command Shell
Here’s one way that that PowerShell is different and strange. Recall that if you type dir
into a regular Command Prompt window, the dir command spits out a bunch of text
onto the screen, giving the names, sizes, and timestamps of the files in a directory.
You can direct that text into a file using the > redirection operator, or you can “pipe”
the text to another program using the | operator. For example, the command

dir /s /b | sort

lists the files in the current directory and its subdirectories as a stream of text, and
the text is sent to the sort program that sorts them alphabetically. If you’ve used a
command-line environment in nearly any computer operating system in the last, say,
30 years, this should be familiar.

Windows PowerShell command lines appear to work in the same way, but its com-
mands deal with objects rather than just text — objects that represent files, folders,

http://www.informit.com/store/product.aspx?isbn=0789737280
http://www.informit.com/store/product.aspx?isbn=0789737280

4 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

Windows device drivers, network services, documents any of the hundreds of objects
defined in the .NET Framework library). What flows from one command to the next,
via that pipe symbol (|), is a stream of objects. The various PowerShell commands
let you generate, manipulate, invoke methods on, change properties of, and extract
information from these objects.

As an example, here’s what happens when you type dir in a PowerShell window.
The PowerShell dir command is actually an alias (shorthand) for the Get-ChildItem
cmdlet. You can type either name and get the same result.

Wait, cmd-what? Cmdlet, pronounced “command-let,” as in “cute tiny little
command.” PowerShell’s built-in commands are called cmdlets. Maybe they were out
of vowels up in Redmond that year? No, the reason for the odd name is that they’re
not completely built in to PowerShell, like cmd.exe’s commands, nor are they really
completely independent of it, like exe files. They’re implemented in a new way, so
they needed a new word. In any case. . .

With no other arguments, Get-ChildItem emits File and Folder objects for all the
files and subfolders in the current directory. If I type the command dir with no argu-
ments, Get-ChildItem spits out a list of File and Folder objects, and because there is no
pipe or output redirection, the results spill into the Windows PowerShell command
window.

When objects land in the PowerShell window, PowerShell prints one line for each
object, in a nice columnar format, listing the most important properties of each
object. For File and Folder objects, this includes the Name, Length, LastWriteTime,
and Mode properties. The resulting list looks like this:

 Directory: C:\users\bknittel
 Mode LastWriteTime Length Name
 ---- -------------
------ ----
 d-r-- 6/2/2010 1:27 PM Contacts
 d-r-- 6/15/2010 11:35 PM Desktop

d-r-- 6/14/2010 8:47 AM Documents
 d-r-- 6/2/2010 1:27 PM Downloads
 :

d-r-- 6/2/2010 1:27 PM Videos
 d-r-- 6/23/2010 11:01 AM Virtual Machines
 -a---
8/21/2009 6:07 PM 1889 listprops.vbs
 -a--- 8/20/2009 12:34 PM 1020 nets.vbs

-a--- 8/20/2009 11:54 AM 3668 tempfile.txt
 -a--- 9/14/2009 7:13 PM 1605 test.vbs

-a--- 6/23/2010 2:19 PM 3650 x

The headings at the top of the columns are just the names of the properties that
are being displayed. The listing would be similar for any other type of object a cmdlet
generated.

The thing to ponder here is that the dir command in the regular Command Prompt
environment generates text in a fixed format. The dir cmdlet in Windows PowerShell
generates a list of File and Folder objects, which PowerShell formats into a text listing
after the fact.

You can redirect the output of a PowerShell cmdlet to a file, using the familiar >
character, and the same thing occurs: the stream of objects gets formatted into a nice,
text listing.

The innovation in PowerShell is what happens when you use the pipe redirection
symbol (|). PowerShell lets you direct a stream of objects from one cmdlet to another,
and they can change the properties of and call methods on these objects, doing real

5 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

work as they get passed along. It’s only when the objects finally hit the screen that
text appears. One cmdlet might generate a list of objects representing files, comput-
ers, services, and network objects; the next in the pipeline might filter and pass on
just the ones that are of interest; and the next might call methods to perform actions
on the objects. This is a truly unique feature of Windows PowerShell.

So, to do what used to require a loop in WSH:

fso = CreateObject(“Scripting.FileSystemObject”)
 for each file in fso.GetFolder(“c:\
temp”).Files
 file.Delete
 next

you can do with a single command line in Windows PowerShell:

dir c:\temp | remove-item

dir generates a list of File and Folder objects representing the contents of directory
c:\temp and passes it to the remove-item command, which deletes the “real world”
thing behind any object it’s passed.

You could also type the following:

(dir c:\temp).delete()

which generates the same stream of File and Folder objects and calls the delete
method on each object. The result is the same: The files are deleted.

(And, as you might expect, you could also just type remove-item c:\temp*.*. That
would be the most straightforward command, but it doesn’t show how PowerShell
differs from the regular command prompt.)

Here’s another example of how a pipeline command can work:

dir | where-object {$_.LastWriteTime -lt
(get-date).addmonths(-6)} | remove-item

dir generates an object for each file in the current directory, where-object passes
along only those that are more than six months old and remove-item deletes the old
files. So, we’ve constructed a disk cleanup command out of general-purpose cmdlets.
(Don’t type this command, by the way—it’s just an example!)

This is very peculiar and powerful, and it takes some getting used to.

An Extensible Environment
PowerShell can run three sorts of programs: built-in commands, external programs,
and scripts. This is analogous to the regular Command Prompt environment, where
you could use the built-in commands that are handled by the cmd.exe program itself,
run external programs, or create batch files that let you orchestrate either type of
command to perform the steps of a more complex task. In PowerShell, the built-in
commands are cmdlets. Unlike the Command Prompt shell, however, these built-in
commands are not wired into the PowerShell program but are added to it through
a snap-in mechanism as one or more .DLL files stored on your hard disk. So, custom
cmdlets can be added to the environment. The idea is that Microsoft and third parties
can add install management cmdlets for their applications and servers, so that they
can be managed by PowerShell scripts. Microsoft SQL Server, Microsoft Exchange,

6 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

and VMWare servers have custom cmdlet snap-ins, for example. If you’re a skilled
.NET programmer, you can create your own custom cmdlets using the Windows
PowerShell 2.0 Software Development Kit (SDK) and Microsoft Visual Studio
Express Edition, both of which you can download free from Microsoft.

In addition, PowerShell responds to command keywords that are part of its built-in
script programming language which is a unique language, all its own. It’s not VB-
Script, it’s not VB.NET, it’s not C#. It’s PowerShell.

You can also create and use .NET and COM objects not just in scripts, as you do
with WSH, but right at the PowerShell command prompt.

This means that every cmdlet, Windows program, command-line program, .NET
object, and COM object (including WMI and ASDI) is available right at your finger-
tips.

NOTE: As an aside, it’s interesting to know that just as VBA provided an object-oriented, full-

scale programming language that could be integrated into applications such as Microsoft Word,

programmers can “host” PowerShell inside their .NET applications. PowerShell is intended not

just for helping you automate your routine tasks, but to serve as the scripting/macro language

for Windows applications and services.

Obtaining Windows PowerShell
Windows PowerShell 2.0 is installed by default on Windows 7 and Windows Server
2008 R2. For information on installing it on other versions of Windows, see Power-
Shell details on the Microsoft Web site.

The PowerShell Environment
You should be able to click Start, All Programs, Accessories and see Windows Pow-
erShell as a choice (although you might have to scroll down; by default, it’s below
System Tools). On 32-bit Windows versions, there are normally two choices:
NN Windows PowerShell—This is the interactive command-line environment. I

discuss this first.
NN Windows PowerShell ISE—This is a GUI editing/debugging tool that you can use

to help develop PowerShell scripts. I discuss this later.
On 64-bit versions of Windows, these two menu selections run the 64-bit version

of Windows PowerShell. In addition, there are selections for Windows PowerShell
(x86) and Windows PowerShell ISE (x86), which run the 32-bit versions of Power-
Shell. These are provided in case you have to use a cmdlet snap-in that is available
only in a 32-bit version, but they are otherwise probably not of much interest.

Alternatively, you can open a regular Command Prompt window and type power-
shell or type powershell in the Windows Search box or Run dialog box.

NOTE: If you run PowerShell inside a regular Command Prompt window, you won’t get the

default white-on-blue color scheme that you get when you open PowerShell from the menu, but

it’s the same program. You can return to the regular cmd.exe command prompt by typing exit.

http://msdn.microsoft.com/en-us/library/ff637750.aspx
http://msdn.microsoft.com/en-us/library/ff637750.aspx

7 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

Windows PowerShell is subject to the same security issues as the regular
Command Prompt. To modify system files or perform other administrative actions
on Windows 7 and Vista, you must run PowerShell with elevated privileges. On
Windows XP, to perform privileged tasks, you must be logged on as a Computer Ad-
ministrator or run PowerShell under an Administrator account using runas.

I discuss this in more detail toward the end of this article in the section “Power-
Shell Security.”

Whichever method you use to start PowerShell, the next prompt you see should
have the letters PS at the left, as shown in Figure 1 below. Type dir and press Enter,
just to prove to yourself that this is not the old Command Prompt. The format of the
directory listing is very different.

The PS to the left of the prompt tells you you’re using Windows PowerShell.

The PowerShell Command Prompt
Windows PowerShell prompts for commands just as the old Command Prompt envi-
ronment does. It prompts, you type a command, you press Enter, it displays some sort
of results, and you repeat the process over and over.

One thing that’s really improved with PowerShell, though, is that the command
language is really a full-fledged programming language and creating, working with,
and displaying variables is easy. For example, you might recall that you could use the
set name=xxx command in batch files to store data in named variables and use the
%name% syntax to retrieve the data.

In Windows PowerShell, you define variables by putting a dollar sign ($) in front
of the variable’s name to both define and retrieve its value. For example, you can type
the commands

$a = 40 + 7 $a

and Windows PowerShell obediently displays the computed value of a, which is 47.
Every PowerShell command is just an expression with a value, so it’s perfectly legal

to type 40+7 as a command line. PowerShell prints the result. These are trivial ex-
amples, but it can be quite powerful when you’re working with objects—just type the
name of an object and its property to display the value of the property, for example:

$f.path

to print the Path property of an object you’ve put into variable $f.
Remember that whatever you can put into a script, you can also type directly at the

PowerShell command prompt.

Command-Line Editing
PowerShell lets you use the backspace, arrow, and other editing keys on your key-
board to modify command lines as you’re typing them and to recall, modify, and reuse
previously typed commands. This will be very familiar if you’ve worked with the
Command Prompt because the editing keys are identical. (There’s a reason for this:
PowerShell is a standard console application just like cmd.exe.)

http://www.computerworld.com/s/article/9201422/Introduction_to_Windows_PowerShell?pageNumber=11#ps_security
http://www.computerworld.com/s/article/9201422/Introduction_to_Windows_PowerShell?pageNumber=11#ps_security

8 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

The arrow key functions are the most important to remember:
NN The left and right arrow keys (← and →) let you move within a command line that

you’re typing, so you can go back and change a mistake at the beginning of the line
without erasing and retyping the whole thing.

NN Ctrl+← and Ctrl+→ move back and forth a whole word at a time. This can save a
lot of keystrokes.

NN The Home and End keys move instantly to the beginning or end of the line.
NN Normally, if you move backward in the edited line and start typing, what you type

is inserted ahead of what’s already there. This is usually very handy. If you need to
replace a lot of text, though, instead of erasing what’s there and then typing in the
new, press the Ins key once and your typing replaces what’s already there—just
type over it. The cursor changes to a solid block to remind you that this is what will
happen when you type. You can press Ins again to return to Insert mode. Power-
Shell automatically switches back to Insert mode when you press Enter, so you can
edit the next command normally.

NN The up and down arrow keys (↑ and ↓) let you step back to commands you typed
previously. You can use ↑ to locate a previous command and press Enter to reissue
it, or you can locate it and then edit it before pressing Enter.
There are some other function keys that you might want to know about. These

shortcuts actually work in any Powershell or Command Prompt window, and with
any console application:

KEY DOES THE FOLLOWING...

F2 F2 followed by a single character copies text from the previously entered command
line into the current command line, up to but not including the first occurrence of the
character you type. For example, if the previous command was
get-childitem c:\temp | get-member
then pressing F2 | copies get-childitem c:\temp into the current input line.

F3 Types in whatever was in the previous command line from the cursor position to the
end of the line. For example, if you mistype a single character in a command line:
fet-childitem c:\temp
and don’t realize it until you’ve pressed Enter, just type g and then press F3 to recall the
rest of the line. You’ll end up with
get-children c:\temp.

F4 F4 followed by a single character deletes text from the cursor up to but not including
the first occurrence of that character.

F7 Pops up a list of recently typed commands. You can scroll through it using the arrow
keys and press Enter to reissue the command.

F9 Lets you type in the number of a previous command. The numbers are the ones shown
in the F7 pop-up. (This one would have been useful if the numbers ran backward, so
that 3 meant the third command back, but they don’t, so it’s not.)

9 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

To be honest, you can work through an entire IT career without ever using these
F-key shortcuts and not suffer for it, but if you can manage to remember them, they
could come in handy some day. I keep meaning to remember F7, but I never do.

Copying and Pasting
Copying and pasting in the PowerShell environment works exactly as it does in
any Command Prompt or console program window, again, because PowerShell is a
normal console program, just like cmd.exe.

You can’t cut text out of the window; you can only copy text from a rectangular
region to the clipboard. To copy from the PowerShell screen with the mouse, click
the upper-left corner of the PowerShell window and select Edit, Mark. Point to the
upper-left corner of the text you want to copy, press the mouse button, and drag to
the lower-right corner of the text you want. Then, right-click the screen, or press
Enter, to copy the text.

NOTE: If all the text you want isn’t visible, remember that you can scroll the window up and

down during the process.

There are also keyboard shortcuts for these steps. Press Alt+Space E K to begin.
You can then use the arrow keys to move the cursor to the upper-left corner of the
desired text; then, hold down Shift and while holding it, use the arrow keys to move
to the lower corner. Press Enter to complete the operation.

Personally, I find it easiest to type Alt+Space E K to start, switch to the mouse to
mark the rectangle, and then go back to the keyboard to press Enter.

To paste text from the clipboard into the PowerShell window, click the upper-left
corner of the window and select Edit, Paste. You might find it quicker to use to the
keyboard shortcut: Alt+Space E P.

Pausing Output and Stopping a Runaway Program
As in the regular Command Prompt environment, you can type Ctrl+C to cancel a
running PowerShell program or script.

In addition, Ctrl+S stops a printout that’s scrolling by so fast you can’t read it, and
another Ctrl+S starts things up again. You can also use the scrollbar to look back
through the contents of the PowerShell window.

Still, if a command is going to generate a lot of output, just as in the Command
Prompt environment, it’s best to either pipe the output through the more command,
which pauses after every screenful, or direct the output into a file, and then view the
file with Notepad or a word processor.

Command-Line Syntax
PowerShell’s command-line syntax is at once familiar and a bit strange. I discuss this
in the following sections.

10 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

Command Types
As I mentioned previously, PowerShell has built-in language statements, and it can
run internal cmdlets, external commands, and scripts that contain multiple Power-
Shell commands.

With the exception of the PowerShell language keywords like if and foreach, which
can have complex structures, commands are evaluated one line at a time, just as in
the Command Prompt world.

The first word on the line is the name of the command you want to run. Any re-
maining text on the line is passed to the command as its arguments. Normally, spaces
delimit the command name and the arguments, but you can use the single or double
quotation mark (“) character to embed a space in an argument, as in the following
command:

command /abc “argument with spaces”

In an unusual twist, to type a program name that has spaces in its name or path,
you must use single or double quotes around the name and must precede the
command with an ampersand, as in this example:

&”command with spaces” /abc argument

PowerShell finds the program that corresponds to the command name by search-
ing the following places in this order:
1. PowerShell first looks through its alias list, which is a list of shorthand names for

commands. PowerShell is installed with nearly 150 built-in aliases predefined.
For example, cd is set up as the alias for the Set-Location cmdlet. As you work with
PowerShell, you’ll find that you’ll soon want to define your own custom aliases for
the commands you use most often.

2. If an alias name is matched, PowerShell replaces the command name in your
command line with the alias definition and the search process over.

3. PowerShell then scans the names of functions that have been defined by the
current script, if you’re running a PowerShell script, or that have been defined at
the command line. If a function with the specified name is found, the function is
called and passed the command-line arguments. You can define your functions in
the PowerShell language in scripts or at the command prompt. They work and act
just like cmdlets.

4. If the command name is not found in the alias list, PowerShell searches the list of
cmdlets that come preinstalled with Windows PowerShell or have been added by a
snap-in that came with an added application or service. If it’s found, the cmdlet is
run.

5. If the name doesn’t match a cmdlet, PowerShell uses the standard search path
mechanism to look for an external program, much as cmd.exe does. It looks first in
the current directory and then through the directories listed in the PATH envi-
ronment variable for a file with the stated command name and whose extension
is a recognized program extension. In each folder searched, PowerShell does the
following:

11 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

NN It first looks for the extension .ps1, which is used for PowerShell scripts in Pow-
erShell versions 1.0 and 2.0. If a script file is found, PowerShell runs the script
(subject to the security restrictions that I discuss shortly).

NN If a .ps1 file is not found, it scans through the extensions listed in the PATHEXT
environment variable, just as cmd.exe would. This mechanism lets it find and
run standard Windows executable files (.exe files), both GUI and console ap-
plications. PATHEXT also includes .cmd and .bat, so that PowerShell can run
normal Command Prompt batch files—it fires up a copy of cmd.exe to do so.
Likewise, for .vbs, .js, .vbe, and .jse files, it fires up WSH to run these scripts, and
for .MSC files, it runs the snap-in through the Microsoft Management Console.

6. Thus, you can run PowerShell cmdlets and scripts, console applications, Windows
programs, batch files, or any other sort of program from the PowerShell environ-
ment. notepad still starts Notepad.

There are exceptions to the normal search processing, though:

NN If your command includes an explicit path as part of the command name, Power-
Shell runs the specified file. For example, the command c:\bin\sort.exe would run
that specific copy of sort.exe and would not try to search for sort as an alias or in
the PATH locations.

NN To improve security, PowerShell will not run a .ps1 PowerShell script that it found
in the current directory before it searched the PATH list. It will tell you about it,
but it won’t run it. It will run only PowerShell scripts that it finds in the PATH or
those to which you’ve explicitly typed a path.

NN You can run a file in the current directory by preceding its name with .\, as in .\
myscript.ps1. This is an explicit path, so it satisfies PowerShell’s security require-
ment.

NN Even then, PowerShell might not run scripts at all, depending on additional secu-
rity settings that I discuss in the next section.

NN It’s conceivable that more than one PowerShell snap-in might define a cmdlet with
the same name. PowerShell searches through snap-ins from the most recently
installed back toward the first installed, and the first snap-in found that defines
the cmdlet name is the one that’s used. Also, you can import (load) new snap-in
cmdlet modules while PowerShell is running, and the same ordering applies:
Snap-ins are examined from the most recently imported toward the oldest.

NN Or, you might have defined an alias that has the same name as an existing cmdlet.
If you type the aliased name, you’ll get the command that the alias specifies, not
the original cmdlet.

NN To run a specific cmdlet from a specific snap-in without hitting this ordering or
aliasing problem, you can precede the cmdlet name with the name of the snap-in
module, followed by a backslash. For example, Microsoft.PowerShell.Utility\ Get-
Date runs the Get-Date cmdlet in the Microsoft.PowerShell.Utility module even if
you’ve defined an alias for Get-Date or another module has defined a cmdlet with
the same name.

12 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

NN For more information on command searching, type help about_command_ prece-
dence at the PowerShell command prompt.

I know this can seem tedious in an introduction, but you need to know the details
of the search system to get your own scripts to run and to diagnose problems if
someday the program that runs isn’t the one you expected.

The main thing you should take from this is that if you want to develop and use
your own PowerShell scripts, you will want to create a specific folder to hold them
and put that folder name into the Windows PATH environment variable. If you’ve
already set up such a folder for batch files or WSH scripts, you can use the same
folder for PowerShell scripts.

Redirection and Pipes
You can redirect the output of commands you run from the PowerShell prompt and
in PowerShell scripts into files. The usual operators—|, >, <, >>, and so on—work as
they do in the Command Prompt environment.

In PowerShell, though, remember that most cmdlets emit objects, not text. The
output of these cmdlets turns into text listings only when they land in the PowerShell
window, are redirected to files, or piped to standard Windows console commands.
You can control the formatting of these text listings using specific cmdlets.

Cmdlets and Objects and Scripts, Oh My!
The PowerShell world introduces new, somewhat confusing concepts and termi-
nology, and I suspect that your first reaction will be similar to mine: I looked at a
few PowerShell scripts; scratched my head; and thought, “I wonder if there are
any donuts left in the kitchen?” At first, it all seemed pretty opaque and possibly
not worth investigating. Fortunately, this feeling didn’t last long. (Neither did the
donuts.)

The biggest obstacles are the strange names of the cmdlets and the unusual
command-line syntax. Cmdlets have names like Remove-ItemProperty, Get-Content,
Wait-Job, New-Alias, and so on. This can help make sense of it:
NN Cmdlet names are case insensitive. You can type wait-job just as well as Wait-Job.

The capitalization is used to make the words more distinct when you read the
documentation.

NN Microsoft’s programmers chose to use a noun-verb convention for naming the
cmdlets to make the names more clearly say what the cmdlets actually do. The
dash is just part of the name. Rename-Item isn’t some sort of combination of a
Rename command and an Item command. The name is all one word: Rename-Item,
and you can guess from this name that it probably renames whatever items it’s
given.

Yes, the names tend to be long and cumbersome to type. A Unix programmer would
have chosen a name like ri for that Rename-Item command. But, ri doesn’t really tell
what it does. As it turns out, PowerShell does have a built-in alias for Rename-Item,

13 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

and the alias is...ri. As you learn PowerShell’s commands, you might start by using
the long names to help remember what the commands do and then scan through the
alias list and start learning their shorter abbreviations.

NN The names of cmdlet command-line options are similarly long. For example, the
get-process cmdlet can take the following optional arguments:

 -Name “string”
 -ComputerName “string”
 -FileVersionInfo
 -Module
 -Id
integer
 -InputObject object

Again with the long names! Who can type -InputObject quickly without making
three typos along the way? Well, it turns out that you don’t have to type the entire
option name, just enough to distinguish the desired option from any others that start
with the same letters. So, you can type -input or even -in instead of -InputObject. You
just can’t shorten it to just -i because that’s not enough to distinguish between -Id and
-Inputobject.

Some command can be shortened even more. For example, a typical new-alias
command looks like this:

 new-alias -name shortname -val realcommandname -descr “Brief description”

But, you even can omit the parameter switches, in this really short version of the
command:

 new-alias shortname realcommandname

The two arguments in this case are called positional parameters because PowerShell
has to figure out what they are based on their position in the command line. You
can see which parameters can be specified this way by looking at a cmdlet’s syntax
description. If you type new-alias -?, you can see that the syntax is

 New-Alias [-Name] <string> [-Value]
<string> [-Description <string>]</
strong> [-Force] [-Option {None | ReadOnly | Constant | Private | AllScope}]</
strong> [-PassThru] [-Scope <string>] [-Confirm]
[-WhatIf] [<CommonParameters>]

Notice that the -Name option indicator itself is listed in [] brackets, so it’s optional,
but the <string> value after it isn’t. This argument must always be there, so it can be
interpreted by its position. The -Value string is listed the same way, but none of the
other arguments are.

The other main obstacle to learning to use PowerShell is the strange syntax with
commands like the example I gave earlier

dir | where-object {$_.LastWriteTime -lt (get-date).addmonths(-6)} | remove-item

The dir and remove-item parts are self-explanatory, but the middle part is, well,
non-obvious. This where you hit the PowerShell learning curve, and the only thing to
do is expose yourself to a lot of it. It will start to make sense pretty quickly. My advice

14 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

is to read as many PowerShell scripts as you can. Read them like literature, get a feel
for the language, and work out what they do. I’ll just point out a couple of things
about that example command here.

The where-object cmdlet is a filter. It reads a stream of objects from the previous
command in the pipeline, evaluates a true/false value for each one, and passes along
only the objects for which the value is true. In the example, the true/false value is pro-
vided by the part within curly brackets:

{$_.LastWriteTime -lt (get-date).addmonths(-6)}

CAUTION: It’s important to know that this expression isn’t handled directly by where-object.

If it was, then conceivably every cmdlet might have a different way of constructing these

expressions, which make would things inconsistent and difficult to master.

Instead, this expression format is part of the PowerShell language itself. Techni-
cally, where -object expects the body (code) of a function on its command line. The
curly brackets signify that you’re typing the body of a function that you’re defining
on-the-fly without giving it a name, and that function is given to where-object to use
to evaluate each of the file objects it scans. (This little function is technically called a
lambda, but that’s not too important here.)

Let’s pick it apart. There are three parts:

$_.LastWriteTime $_ is a placeholder for the object that where-object is examining.$_.
LastWriteTime picks up the LastWriteTime property from that
object. For a file or folder object, it’s the date and time that the file
was last modified.

-lt This does a comparison of two values, and it’s true if the first value
is less than the first. In other words, the expression {a -lt b}, is true
if value a is less than value b. In this instance, the test is true if the
file’s LastWriteTime is less than (earlier than) the time that comes
after -lt.

(get-date).addmonths(-6) This is the oddest part, but watch how it works: The get-date cmdlet
is run. With no arguments, it spits out a .NET System.DateTime
object representing the current date and time. In this simplest form,
it’s like Now() in VBScript. The parentheses around it indicate that
we are going to treat the result of the cmdlet as a value. addmonths
is one of the standard methods of theSystem.DateTime object.
In this case, we end up with the current date with six months
subtracted from it—in other words, the date six months back.

The end result is that this expression is true if the file was last written more than
six months ago. The curly brackets turn this expression into a function so that where-
object can evaluate it for each of the objects it examines.

The output of this where-object command is just those file objects that were last

15 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

modified more than six months ago. The rest of the command line feeds that stream
of objects to remove-item, which deletes the files they represent. The end result is that
this command purges a directory of old, abandoned files.

Now, I didn’t just write that command off the top of my head. I had to learn the
basics of cmdlets first, so I knew to write:

dir | where-object {some expression} | remove-item

Then, I had to learn about the properties of the file and folder objects to know to
use LastWriteItem and the System.DateTime object to find the addmonths property.
To help with that job, interestingly enough, there are cmdlets that describe the prop-
erties of any object they encounter. I describe that next.

Getting Help
The most important PowerShell command to learn first is the one that helps you
learn about the others! It’s called get-help, but it has a predefined alias named help, so
you can use either of these command names interchangeably. PowerShell has a lot of
built-in help—477 different topics, in fact, at the time I wrote this.

Here are some tips:
NN Type the word help by itself to get a quick introduction to the online help system.
NN After help or get-help, you can type a word, cmdlet name, or partial cmdlet name.

You can also type a phrase enclosed in quotation marks. If more than one topic,
cmdlet name, or description matches what you typed, get-help prints a list of all
matching help entries. You can then type help followed by the specific entry name
that interests you to get the details. If exactly one name or description contains the
word or phrase you typed, get-help prints the help information for that topic.

NN Some cmdlets have additional help information available. For example, you can
see some examples of using the new-alias cmdlet by typing help new-alias -examples.
Common options for additional information are -examples, -detailed, and -full. The
main help page for a topic tells you whether these expanded pages are available.

NN The help text appears in the console window and by default is piped through more
so it stops after every screenful. Press Enter to go on to the next page.

NN Alternatively, you might find it easier to direct help output into a file by adding, for
example, >x to the end of the help command line; then, type notepad x to read the
text.

NN There are help entries covering every one of the installed cmdlets and additional
articles on different topics. These articles start with about_. For example, help
about_execution_policies prints information about the scripting security restriction
system. (You can also type help about_exec and get the same result because only
one entry contains the string “about_exec” in its title or description.) To see a list
of all of these “about” entries, type help about.
This online help system is great for locating cmdlets based on words in the descrip-

tion of the job they do and for learning about their command-line syntax after you’ve
found a cmdlet that interests you.

16 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

TIP: In the online syntax descriptions, the following conventions are used:

[] square brackets indicate optional command arguments.

{ } curly braces usually indicate a series of options from which you can choose, with a vertical bar

| between the options.

< > angle brackets surround a value that you have to supply yourself. For example,

[-Description <string>] indicates an optional argument. You can omit it, or you could type

something like -description “some text”. As I mentioned in the previous section, you could

probably abbreviate this to -descr “some text”.

Prompting to Complete Commands
If you type a PowerShell command that requires specific arguments, but omit some
or all of the required arguments, PowerShell prompts for them by name. Here’s an
example: If you type set-alias without any arguments, PowerShell prompts for the
required -name and -value arguments. Here’s how it looks:

PS C:\Users\bknittel> set-alias
 cmdlet Set-Alias at command pipeline
position 1
 Supply values for the following parameters:
 Name:
ax
 Value: get-alias

(I typed the responses in italics.) This mechanism can help you as you learn to use
the cmdlets, but remember that PowerShell won’t prompt for optional arguments,
just the required ones.

Personally, I don’t find this mechanism that useful and never trigger it deliberately.
You should know it exists though because if you omit a required argument from a
command, PowerShell might prompt you in this way and you might find it confusing
at first.

Aliases
As I mentioned previously in “Command-Line Syntax,” when you type a command,
PowerShell looks through list of aliases, functions, cmdlets, and external programs to
find the program you want to run.

Because people who do a lot of work at the command prompt are so used to typing
commands like cd and dir, PowerShell comes with predefined aliases for many of
these familiar commands. Because the names of many of the cmdlets are tediously
long, there are predefined aliases for many of the cmdlets that are only two or three
characters long. (This should make Unix users happy!) The idea is that you’ll find that
there are just a few commands you tend to use over and over. After you know which
these are, you can look up their short aliases and use those to save time typing.

One serious limitation of aliases, though, is that they can map only one command
name to another. An alias definition can’t include command-line arguments. I would
really like to define an alias named h that issued the command cd $home, which
changes back to your user profile “home” directory, but this isn’t supported. It’s really
unfortunate.

17 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

How to Get a Listing of Aliases
You can see a list of all the built-in aliases by typing alias (which, as you’ll see, is an
alias itself, for the real command name get-alias). I find it easiest to view this list in a
text file by typing two commands:

alias >x
 notepad x

You’ll notice the alias named %, for ForEach-Object, and the alias named ?, for
Where-Object. The latter, used in that “delete old files” command example I gave
earlier in the chapter, would look like this:

dir | ? {$_.LastWriteTime -lt (get-date).addmonths(-6)} | remove-item

Personally, I don’t think it this reads well, but if I got used to typing it, it might save
some time. It’s up to you whether you want to use shortcuts like this, so nobody’s
forcing anything on you. The idea is to use the shortcuts that make sense to you and
ignore the others.

How to Define a New Alias
You can define a new alias by typing a command like this:

new-alias -name shortname -value
realcommandname
-description “Brief description”

but substituting the name of the alias you want to create for shortname and the
command that the alias should run for realcommandname. If the alias already exists,
you have to add -force to the command to replace the old one. I show you how you
can shorten this command later in this article.

You should know that alias definitions don’t survive when you close your Power-
Shell window. The next time you run PowerShell, your custom alias will be gone. If
you come up with favorite aliases you want to keep, see the section on Profiles at the
end of this article.

Navigating Directories and Other Locations
In the command-line world, you use typed commands to navigate up and down
through folders and disk drives. Windows PowerShell uses the same cd command as
the Command Prompt to change directories, so familiar commands like

cd \Users
 cd ..
 cd subfolder

still work. You can use the Tab key to automatically fill in partially typed file and
folder names, just as in the Command Prompt environment.

You can also take advantage of directory names stored in PowerShell variables.
Your user profile folder path is stored in variable $home, so you can use the command
cd $home to return to your profile directory from any location.

Now, here’s something really interesting: You’re used to using cd to move around
the file system. In PowerShell, you can also navigate through the Registry!

Here’s how it works: Just as Windows recognizes different drive letters, like this:

18 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

c:\users\bknittel

d:\saved_pictures\February2010\Yosemite

e:\setup.exe

PowerShell recognizes additional drives, which it calls providers, that treat the
Registry and the lists of environment variables, aliases, PowerShell variables, defined
functions, digital certificates, and Web Services for Management just like disk drives.
You can specify paths to these elements, list them with dir, and in some cases even
use cd to navigate through them.

The default provider drives on Windows 7 are listed in Table 1.

Table 1: Provider Drives on Windows 7

DRIVE NAME CONTAINS

A:, B:, C:, and so on Disk drives (FileSystem provider)

Alias: List of PowerShell aliases

Cert: Digital certificates

Env: Environment variables

Function: Defined functions

HKCU: Registry section HKEY_CURRENT_USER

HKLM: Registry section HKEY_LOCAL_MACHINE

Variable: PowerShell variables

WSMan: Windows Services Management connections to the local and remote
computers

Name completion works with these drives, too. For example, if you type dir
hklm:soft and press the Tab key, PowerShell changes soft to SOFTWARE, which is the
first Registry key that matches the partial name you typed. You can continue the path
by typing \ and another part of a key name.

Try typing these commands at the PowerShell prompt (and notice that you don’t
have to capitalize them; the names are case insensitive):

dir hklm:\software This lists the keys under HKEY_LOCAL_MACHINE\SOFTWARE.

cd hklm:\software Makes the Registry your “current location.”

dir Lists the keys in this current location.

cd $home Returns to the file system in your profile folder.

19 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

dir cert:\currentuser Lists certificates associated with your use account.

dir variable: Lists all variables currently defined in Windows PowerShell.

dir env: This lists all defined environment variables.

Many PowerShell cmdlets can work with objects specified by their paths whether
the paths point to a file, a Registry key, a certificate, or whatever. For example, the del
command (which is an alias for delete-item) can delete a Registry key just as easily as a
file, with a command like del hkcu:\software\badkey.

PowerShell Security
Because Windows PowerShell can be used to change Windows settings and has the
potential, if run by a privileged user, of undermining Windows’ security system,
Microsoft has taken care to be sure that it’s difficult to run PowerShell scripts without
your taking intentional steps to enable them. There are additional barriers to running
scripts that come from the Internet, via email, Instant Messaging programs, and
so on. This was done to avert the possibility that hackers might figure out ways to
exploit potential flaws in, say Internet Explorer, to install and run PowerShell scripts
on your system without your permission.

PowerShell Scripts and User Account Control
Windows PowerShell was designed first and foremost for managing Windows,

so you will end up wanting it to do things that require Administrator privileges. On
Windows 7 and Vista, PowerShell, requires elevated privileges—just running it from
a Computer Administrator account isn’t enough. Either open an elevated command
prompt and then type powershell or use any of the methods you’d use to run cmd.exe
with elevated privileges, but run powershell.exe instead.

On Windows XP, to perform administrative functions, you’ll have to be logged in
as a Computer Administrator when you start PowerShell. Alternatively, you can use
the runas command to start powershell.exe in the context of an Administrator’s user
account.

Whatever version of Windows you’re using, you’ll probably want to try this right
away, as you want to use a privileged PowerShell command to let you run PowerShell
script files. I describe this command next.

Script Execution Policy
As initially installed, PowerShell is set up so that it can be used interactively at

the command prompt but will not run scripts. This does make sense. The majority
of Windows users will never touch PowerShell, and nobody knows what future bug
might be discovered that would let hackers silently send them malicious PowerShell
scripts via Internet Explorer, Adobe Acrobat, YouTube, or who knows what. Better to
be safe than sorry.

Power users just have to change the default script execution policy from Restricted

20 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

to, as I recommend, RemoteSigned. Table 2 lists the possible policy settings.

Table 2 PowerShell Script Execution Policy Settings

SETTING DESCRIPTION

Restricted This is the default setting. No PowerShell scripts will run at all, under any
circumstances.

AllSigned Only digitally signed scripts (including profile scripts, which I describe
in the next section) will run; in addition, you are prompted to grant
permission to run scripts signed by the specific certificate used.

RemoteSigned Scripts (and profiles) that have been written locally will run.
Scripts that have been downloaded from the Internet will not run unless
they are signed and you have approved the signing certificate.

Unrestricted All scripts will run, but you are warned about scripts that have been
downloaded and must approve them before they’ll run.

Bypass Any script will run, regardless of its origin. This is a potentially very risky
setting and should be used only in very specific circumstances, where
some other security system is in place to prevent rogue scripts from
running without your permission.

(Undefined) If no policy setting is in place, PowerShell treats the setting as Restricted
and no script will run.

I recommend the RemoteSigned setting. Scripts you write and store on your com-
puter or retrieve across your local area network will run without any problem, but
scripts that arrive via programs with Internet connectivity won’t run unless they have
a digital signature and you’ve confirmed that you trust the person or company that
signed the script. This is a good security compromise.

To change the setting, open a privileged PowerShell window as described in the
previous section. Then, type the command

set-executionpolicy remotesigned

You will have to confirm that you want to make this change by typing y and Enter.
(You can disable that prompt by adding -force to the command line.)

Now, you can run PowerShell scripts and profiles. .
There are few things you should know about this security setting:

NN If your computer is part of a corporate domain network, this setting is probably
under the control of your network manager via Group Policy. Type get-execution-
policy to see what your current setting is. You might not able to change it yourself.

NN If you are forced into, or choose, the AllSigned policy setting, you’ll have to digi-
tally sign any script you want to run. It’s a cumbersome process, but it’s not too bad
after you get used to it.

21 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

NN You might recall that files downloaded from the Internet are marked as “poten-
tially risky” through information stored in a separate data stream associated with
the downloaded file. To remove this marker from a downloaded script that you
are certain is safe, use Windows Explorer to open the file’s properties dialog box
and click Unblock. It will now be considered a local file and will run under the
RemoteSigned execution policy.
Finally, remember that if you have a local area network (LAN) but not a Windows

domain network, and the scripting execution policy isn’t set by Group Policy, you’ll
have to change this setting on every computer on your network that you want to
manage using PowerShell.

PowerShell Profiles
As I showed in the previous sections, you can customize the PowerShell environment
to suit your preferences by adding custom aliases, adding directories to the path, and
so on. It would be a pain to have to retype these commands every time you started
PowerShell—and you don’t have to if you set up a PowerShell profile, which is a
script of commands that PowerShell runs every time you start a new instance. You
might want to put commands of this sort in a profile script:

new-alias -name “n” -val
 “notepad” -descr “Edit a file with Notepad”
 $env:path
+= “c:\PSscripts”

so that your favorite, custom aliases will be available every time you use Power-
Shell.

Here’s the skinny: Whenever you start Windows PowerShell in any of its various
flavors (the regular command-line PowerShell, the GUI PowerShell ISE, or a Power-
Shell variant that’s embedded inside another application), it looks for profile scripts
in the following two locations, in this order:

%windir%\system32\WindowsPowerShell\v1.0

where %windir% is the folder in which Windows is installed, usually c:\windows,
and

%userprofile%\[My] Documents\WindowsPowerShell

where %userprofile% is your account’s profile folder, usually c:\Users\username on
Windows 7 and Vista and c:\Documents and Settings\username on Windows XP.

Within these two folders, the different flavors of Windows PowerShell look for
different profile filenames. Every PowerShell variant looks first for a script named
profile.ps1 and runs it if it’s found. The command-line PowerShell then looks for a
profile script named Microsoft.Powershell_profile.ps1 and executes that one if it’s found.
The GUI PowerShell ISE program, on the other hand, looks first for profile.ps1 and
then Microsoft.PowerShellISE_profile.ps1.

Profile scripts in the %windir% folder affect all users on the computer, while profile
scripts in your %userprofile% location affect only shells that you use. So, you can
decide to make some customizations available to everyone and make some just for

22 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

yourself by setting up separate profile scripts. Likewise, you adjust every PowerShell
variant by putting commands in profile.ps1, or you can season the different Power-
Shells to taste by putting commands in the version-specific files.

PowerShell executes each of the scripts it finds, so the environment you end up
with is the result of the cumulative changes made by all the script(s) that you’ve set
up.

Creating a PowerShell Profile: PowerShell has a predefined variable named
$profile that points to the version-specific profile file in your %userprofile% folder. For
example, in my command-line PowerShell, $profile has the value “c:\Users\bknittel\
Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1”.

So, you can instantly create a PowerShell profile by typing the command notepad
$profile. Notepad will ask whether you want to create a new file. Click Yes, and you’re
ready to go.

To create a profile for all users in folder %windir%\system32\WindowsPowerShell\
v1.0 on Windows 7 or Vista, remember that you’ll need to use an elevated Command
Prompt or PowerShell instance. This folder name is stored in variable $PSHOME, so
from PowerShell you can use the command notepad $pshome\profile.ps1 or notepad
$pshome\Microsoft.PowerShell_profile.ps1 to create or edit the file.

However, and this is a big however, profile scripts are still scripts and PowerShell
will only run profile scripts that meet the security guidelines I described in the
previous section. Remember that the default execution policy is Restricted, so profile
scripts won’t run at all (unless you’re on a Windows domain network and your
network manager has enabled script execution).

To take advantage of the profile feature to customize your PowerShell environ-
ment, you will need to change the execution policy and possibly digitally sign your
scripts. The previous section tells you how to do this.

This article is excerpted from the book Windows 7 and Vista Guide to Scripting, Au-
tomation, and Command Line Tools, copyright Pearson Education, all rights reserved.
Reprinted with permission.

http://www.informit.com/store/product.aspx?isbn=0789737280
http://www.informit.com/store/product.aspx?isbn=0789737280

23 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

Getting started with
PowerShell: The basics
Learn how to perform simple tasks and make your way
around the syntax. By Jonathan Hassell

ARE YOU a Windows administrator? Did you make a new year’s resolution
to learn PowerShell in 2015? If so, you have come to the right place.

In this piece, I will get you started by orienting you to the world of Pow-
erShell, helping you get your bearings and showing you how to perform
simple tasks with the language so that you have a solid foundation on

which to add skills for your particular job. Let’s get started.

Get-Basics
PowerShell uses a consistent syntax for all of its commands — in fact, PowerShell
commands are actually called cmdlets, because they’re much more than simple DOS-
style actions. All cmdlets use the following syntax:

Verb-Noun
You can easily remember it as “do something to” “this thing.” For example, here are

three actual cmdlets:
NN Set-ExecutionPolicy
NN Get-Service
NN Show-Command
All cmdlets will always follow this format. Using these three, you will set an execu-

tion policy, show a command or list of commands and get some information about a
service and what it can do.

There are a few things to remember about using PowerShell at any time:
NN PowerShell is case-insensitive. UPPERCASE, lowercase, cAmElCaSe — it doesn’t

matter. PowerShell simply reads the text in and performs the action you want.
NN Since PowerShell cmdlets are always consistently formatted, you can chain those

cmdlets and their output together and do things in sequence. For example, one
cmdlet can retrieve a list of things, and you can send that list (the output from that
first command) to a second command, which then does things too. This can go on
and on and on as long as you need it to until whatever task you want is complete.

NN The output of a PowerShell cmdlet is always a .NET object. This might not
mean a lot to you right now, especially if you are not a programmer or don’t have a
software development background, but you will find as you learn more about the
PowerShell language that this is where some of the real power in PowerShell lies.

24 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

NN PowerShell works well with local systems but it also works tremendously well
“across the wire” with remote systems. With a few changes to settings on
both your local machine and the remote systems you want to manage, you can
execute commands across thousands of machines at one time. This had been the
purview of Bash and Perl before PowerShell, but now Windows has a true remote
command shell equivalent.

Seeing the universe
On a machine where you have PowerShell installed, open it up and just type in the
following:

Get-command

This tells PowerShell to get all of the cmdlets it knows about. In the absence of
anything else, PowerShell will always send output to the screen. (You could direct
this to a file, into another PowerShell cmdlet or use it some other way, but for now
let’s just get a sense of what can be done.)

You should see something like this:

PowerShell’s Get-command cmdlet.

That’s the universe of PowerShell — at least to your machine right now. Other
products like Exchange, SharePoint, System Center and Office 365 all have their own
set of cmdlets that you would need to import to do their service-specific tasks, but
let’s just focus on what your machine knows about now.

That’s still a lot of cmdlets! How many, you ask? Well, let’s figure out how to get
PowerShell to tell us. Remember how I said that the output of a PowerShell cmdlet is
always a .NET object? Well these objects all have properties — exactly the same way
that Windows files have properties. For example, when you right-click on a file in Ex-
plorer and click Properties, you get what amounts to a bunch of attributes and values

25 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

describing the file — author, location, keywords, permissions and so on.
Well, .NET objects have properties too, and one of the properties you get right out

of the box is the count property. At its simplest, the count property can tell you the
number of different things you’re dealing with — users, mailboxes and so on. You can
simply grab the value of the count property of any cmdlet’s output by enclosing the
cmdlet in parentheses, including a dot, and then putting in the name of the property,
count. Like this:

(get-command).count

Remember, you want to put the name of the object in parentheses, add a dot to
access the properties and then enter the property name.

When I typed it in, I got a count property of 1,141. Your number might be differ-
ent, depending on what versions of Windows and PowerShell you are running. Don’t
worry too much about these differences now.

Counting, as simple as it is, can come in handy in all sorts of situations. For
example, in Exchange installations, you can get a count of how many mailboxes there
are by just using:

(get-mailbox).count

Or maybe you have an Active Directory deployment and you want to know how
many users there are in total. Or you want to know how many events there are in
an event log. Maybe you want to monitor how many events there are from a certain
service or application that writes to the event log — but only when there are errors.
A simple monitoring system could use the count property for a given event log, see
when it’s greater than zero and then do some stuff to alert you, like send an email.

The possibilities are pretty much endless, and many things you will want to do in
PowerShell come from looking at the properties of something you’re dealing with.

“But Jon,” I hear you asking. “How do I know what sorts of properties an object
might have?” After all, when you right-click and select Properties in Windows, the
GUI makes it fairly apparent what all of your choices are. Well, keep reading.

Help me!
When I asked folks who were new to PowerShell what they wanted to learn about
first, I received a really interesting comment:

I have used PowerShell commands fed to me in their entirety by various postings on the
Internet — solutions to particular problems. I can see how powerful it is, but am amazed
at how much there must be to remember. Do people remember all of the commands, their
syntax, the command options, switches, etc?

This is an excellent question. PowerShell is a big world of cmdlets, but don’t
despair — each of them is thoroughly documented using the built-in help. You can
access it by — wait for it — using a cmdlet called Get-Help. For any cmdlet, just
precede the cmdlet name with Get-Help and you’ll get a world of documentation.

26 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

TIP: When you first deploy your system, you’ll probably want to run Update-Help, which will

download the latest PowerShell help files from Microsoft and install them on your system. Be

sure to run this as an administrator. It won’t work otherwise.

The update process will only take a minute or two, but then you’ll be using the
latest documentation. You might want to run this every six months or so just to make
sure you’re not missing anything.

Let’s see this in action. We’ll go back to our get-command cmdlet and ask for some
help:

Get-help get-command

This is what I see:

PowerShell’s Get-help cmdlet.

You can see that the get-command cmdlet takes a lot of parameters. If you know
DOS at all, you’ll remember DOS commands have flags, like dir /s, which list the con-
tents of the directory and then all subdirectories, or move /y to move things without
being required to confirm the move for Every. Single. File. Those DOS flags altered
the way a command responded by default.

These cmdlet parameters act in the same way — they affect what the cmdlet does.
You can tell get-command to give you:
NN Only certain types of commands with –CommandType
NN Commands with certain syntax using –Syntax
NN Everything using –all
NN And so on
Most PowerShell cmdlets will accept parameters. You will rarely just use the

default output of a command. So it’s important to know where to look to find these
parameters.

27 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

What else might be useful to find out about a given cmdlet? If you’re sniffing
around an area or a topic, the Related Links section can be really helpful; this is
where you can find related PowerShell cmdlets that might do something else you
want related to the same topic or area.

For instance, if I’m running get-eventlog because I want information about the
event log, I probably want to do something with that information, so running get-help
get-eventlog shows me (in the Related Links section) other cmdlets I’m probably going
to be interested in learning more about, including:
NN Clear-Eventlog
NN Get-Winevent
NN Limit-Eventlog
NN New-Eventlog
NN Remove-Eventlog
NN Show-Eventlog
NN Write-Eventlog
And then I can use get-help with each of those suggestions to get more information.
Are you starting to see how you can work your way through a task using the built-

in documentation? The get-help cmdlet itself has parameters, and one of the most
helpful parameters is the –examples parameter. This lists out a bunch of example
cmdlets that use parameters in various forms and combinations, so you can see the
commands in action and build your own customized versions of these cmdlets based
on the examples.

Try it yourself. Enter:

get-help get-command -examples

You can see that the examples are well documented and clear. And these are every-
where in the PowerShell universe. Going back to an Exchange environment, here’s
what I see with Get-Mailbox:

PowerShell’s Get-Mailbox cmdlet used in an Exchange environment.

And here’s what I see for get-help show-eventlog -examples:

28 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

PowerShell’s Get-Help-Show-Commandlog cmdlet.

So in answer to the reader’s original question — no, everyone doesn’t memorize
everything all the time.

Now, sure, just like you start to remember familiar DOS commands or even Bash
commands in Linux or Unix, you’ll remember some things if you use them often
enough. But PowerShell’s help and the examples that you get right out of the box
with no further effort (other than to update the help files as I recommended earlier)
will always be there as guides to help you figure out what’s going on and how to work
your way out of a puzzle.

Something practical
We have covered only the very, very basics here, but let’s do something practical
before we close up this piece so that you get a real feel for PowerShell and can prac-
tice what you read here right away.

Two very common things you do in administering systems are finding processes
and killing them. You might currently use Task Manager, or for more detailed work
you might use the DOS command tasklist /svc to find the process ID for a given
service and what it’s running, and then use Task Manager to kill it. With PowerShell,
we can do the same thing.

Let’s say that — purely hypothetically, of course — we have a browser whose name
rhymes with Moogle Shrome. It is not well behaved and sucks up a ton of memory if
you leave it open overnight. (As mentioned, this is absolutely hypothetical.) We need
to find it and kill it before it does more damage.

You can probably guess how the cmdlets for working with processes would work.
Get-process will get a list of processes that are currently running on your system,
formatted as a table by default.

PowerShell’s Get-process cmdlet.
I know from get-help get-process that I can specify the name of a process that will

display information only about that process:

29 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

Using a PowerShell cmdlet to get information about a specific process.
And I’m thinking that if get-process gets me the information about a process, then

using the verb-noun format, stop-process would stop one. (I could always check this
out using get-help or get-help examples, but since I’m a in a hurry, I proceed without
reading the directions and just assume that this cmdlet exists.)

PowerShell’s stop-process cmdlet.
My brazenness is rewarded! But now it’s asking me for an ID because when I

entered the stop-process cmdlet, I didn’t tell it which process to stop. I could scroll up
and look for the ID in the results table from get-process chrome. Looks like process ID
2924 is taking up a lot of CPU time, so I’ll enter 2924 and hit enter.

If that’s the only one I want, I hit Enter again on a blank line. (PowerShell is assum-
ing there might be more than one ID I want to kill and is letting me enter multiple
IDs at one time, but to skip out of this anytime you see this, simply enter a blank
line.) I immediately note that Googl...ahem, Moogle Shrome has disappeared.

Without the handholding, I could have accomplished the same thing using this
sequence:

Get-process
Get-process chrome
Stop-process 2924

And I’d be done.

Wrapping up
Congratulations! We just used PowerShell to kill a process that had gone awry. We
puzzled our way through cmdlets, used parameters, remembered ways we could find
out related cmdlets and successfully made educated guesses about whether certain
cmdlets existed by remembering the verb-noun naming methodology.

Now you have the tools to make a good start at using PowerShell like a pro.

30 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

PowerShell for
beginners: Scripts and
loops
With the advent of Windows Server 10, PowerShell is
becoming more important for admins to master, or at least
learn. Here’s how to get started. By Jonathan Hassell

BACK IN 2008, I wrote a piece called PowerShell Tips and Tricks, which
covered the then-relatively new Windows scripting language and some
cool things you could do with it. Although PowerShell has been important
in the Microsoft ecosystem ever since its release, as Windows Server 10
comes closer to release, we find that many features and deployments are

significantly easier and more full-featured when carried out with PowerShell. Simply
put, learning the language, or at least being familiar with it, is now a must.

PowerShell is built into Windows, so there is no fee or additional licensing cost.
In addition, different server products come with their own PowerShells, too, which
expands the universe of things you can do with PowerShell.

I have put together a head-start guide to scripting in hopes that many administra-
tors not yet proficient with PowerShell will use this opportunity to improve their
skills and be ready for the next wave of Microsoft software.

An introduction to scripts
The basis of PowerShell is script processes and commands. Once we have the frame-
work of creating our own scripts down, we can add in some of the more advanced
logic that involves loops and conditionals.

Scripts in PowerShell are basically just text files with the special filename exten-
sion of ps1. To create a script, you enter a bunch of PowerShell commands in a
sequence in a new Notepad file (or really, you could use any text editor you like), and
then save that file as NAME.ps1, where NAME is a friendly description of your script
— with no spaces, of course.

To run a PowerShell script that you already have, you enter in a PowerShell
window either:
NN The full path (folder and file name) of the script, like so: c:\powershell\myscrip-

http://www.computerworld.com/article/2537317/microsoft-windows/powershell-tips-and-tricks.html
http://www.computerworld.com/article/2691251/a-first-look-at-the-windows-server-10-technical-preview.html

31 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

there.ps1
Or

NN If your script is in the current directory the console is looking at, use a period and
then a backslash, like this: .\myscripthere.ps1
Other than that, there is nothing special needed for creating a script in PowerShell.

You simply add the commands you like.
Of course, a script probably needs to do more than one thing or you wouldn’t need

a script for it. Scripts are common in IT already; administrators have been using login
scripts for years to get users’ desktops and environments configured consistently
every time a user logs on. As technology has gotten better, you can script almost any-
thing, from the bare-metal installation of an operating system on a server fresh out of
the factory box all the way up to server workloads, including installing Exchange or
file server roles.

We obviously won’t go that in depth in this piece, but the basic idea behind a script
for our purposes is to do two or three things and then end.

To do that, we need to cover a few elements of a script. The first is the element that
can change. The second is the element of the script that actually does the dirty work
on everything. Let’s look at each of the phases.

Making scripts useful, phase 1: Variables
Now if you buy that the whole point of scripting is to do things over and over again in
a consistent way, then you have to buy the idea that you want to do the same action
to different things. But how do you change the things that are being acted upon?
Variables are how. Variables are kind of like holders, and you can put values, words,
numbers — basically anything — within them.

In PowerShell, variables always have a dollar sign ($) before them.
Let me declare — in other words, set up for the first time — a few variables for you

right now:

$name = ‘Jon’
$number = 12345
$location = ‘Charlotte’
$listofnumbers = 6,7,8,9
$my_last_math_grade = ‘D+’

All I have to do to declare those variables is add a dollar sign, then use whatever
name for the variable I want — no spaces are allowed in the name itself — and then a
space, an equals sign, another space and then whatever I want the value of the vari-
able to be.

If I want to have a variable with text as its value, I need to add a single quote on
either side of the text. (There are some exceptions to this, but again my goal here is
to keep it simple so we’ll stick with this for now.) You can also just declare a variable
without putting a value in it. This kind of “reserves” the name, which is probably
more helpful when you’re in the middle of developing than it is at any other time.

You know what else you can put in a variable? The output of a cmdlet, which is a

32 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

cute moniker that refers to the simplest bit of .Net-based code you can execute that
actually returns a result, either from the PowerShell prompt or from a script. For
example, the Get-Process cmdlet lists all processes, while the Get-PSSnapin cmdlet
shows all current PowerShell snap-ins that enable new functionality.

To find out the total number of cmdlets available on the system, we can use:

 (get-command).count

And at least for the system on which I am writing today’s piece, that returned a
result of 1,338 cmdlets.

Let’s declare a variable to store that count in. We’ll call it

$numberofcmdlets

And let’s store in that variable the output of the (get-command).count entry.

$numberofcmdlets = (get-command).count

PowerShell will tell you the current value of any variable if you just type its name
into the prompt, so let’s see if that worked:

Success! Now you can use that variable as part of something else. For a simple
example, let’s look at the Write-Host cmdlet, which simply writes text to the screen of
the machine hosting the PowerShell session. Write-Host has a bunch of capabilities,
but in its simplest form, you can just say:

Write-Host “Whatever text I want, as long as it is inside double quotes.”

Indeed, you can cut and paste that line into a PowerShell window and it’ll come
out exactly like it goes in.

But you can integrate variables with Write-Host. You just call them with the dollar
sign notation and work them right into your text. For example, I can say:

Write-Host “There are $numberofcmdlets commands available for use on this system.”

And what does PowerShell return to us?

Let’s put variables aside for now, and move on to the next element of scripting:
Decision making and looping.

33 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

Making scripts useful, phase 2: If/Then, Do-While and ForEach
The next phase actually lets you do some magic. We know how to store values in
variables now, but we need to do some things to those variables. Let’s take a look.

If/Then
The simplest form of decision making in PowerShell is the if/then mechanism; in
PowerShell lingo, this is called the “construct.” It basically works like this:

If something is some comparison to something else—> Then do this action.
You format it by putting your comparison in parenthesis, putting a left curly brace

alone on a new line, adding the PowerShell cmdlets or actions to perform if that
action is true beginning on another new line, and then ending with a right curly
brace on a final new line. The key points here are that:
NN The comparison statement must have a logical response of either TRUE or FALSE.

Think of it as a yes or no question. If you need to do something not based on a yes
or no question, then another loop construct is appropriate; we’ll cover that in a bit.

NN The code that runs if your statement is YES or NO must be within curly braces,
and it is best practice to put these curly braces on lines by themselves so that you
can match them up when you are writing more complicated scripts.
For example, if I wanted to compare two numbers — let’s say 5 and 10 — and have

PowerShell display whether 10 was greater than 5, then we could write the following
if/then construct:

If (10 –gt 5)
{
Write-Host “Yes”
}

You may already know that –gt is the PowerShell switch for “greater than.” We
used Write-Host in the previous example as well.

If we run this at a PowerShell prompt, we get:

That’s kind of simple and probably not going to be a ton of use for you in your ad-
ministrative duties. To make the construct a little more functional, you can add more
“nests” to the If/Then block. Again, these execute in a progression — in programming
parlance, this is known as a serial construct, meaning one comparison has to finish,
then the next one, and as soon as one finishes, the comparisons stop.

It would look like this:

If (10 –gt 11)

34 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

{
Write-Host “Yes”
} elseif (11 –gt 10)
{
Write-Host “This time, yes”
}

You should be able to follow that one pretty easily; here is the result.

The first logical comparison (is 10 greater than 11? No) is false, so PowerShell
moves on to the next one via the elseif comparison, which is PowerShell parlance for
“next, please!” (is 11 greater than 10? Yes), and prints the Write-Host line I wrote for
that test.

In constructs like these, when you’re testing, it’s best to have different output for
each test. If I had chosen Yes for both constructs, and then run the script, I would
not have been able to tell which comparison test was producing the Yes — there’s no
differentiation. Here, I added “This time” so I could tell what was actually happening
in the script.

You can include a bunch of these elseif blocks in your script — theoretically there
is no maximum. It’s a great way to establish conditions before you do something.
For instance, if I wanted to move mailboxes only where the user’s region was in the
United States, then I could use an IF statement to get at the mailbox properties and
then write the code for the move within the curly braces.

Or maybe I have a machine with a pesky startup problem because of an interac-
tion with an old piece of software, and so I need to write a script that I set off as a
scheduled task that checks a service after a minute or two and, if it is stopped (there’s
my comparison), starts the service (there’s my code).

Hopefully you can see the applications of this type of PowerShell construct.
Finally, you can choose to include an else block in your if/then construct, which

runs as basically the alternative ending for your script — if all of the ifs and elseifs
do not actually evaluate and run their code, then the else block can do something to
conclude the script. The else block is written at the very end and DOES NOT include
a parenthetical comparison statement; you leave it off.

Here’s an example: I might make a series of comparisons like this, and then make a
statement of exasperation at the end:

If (10 –gt 11)
{

35 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

Write-Host “Yes”
} elseif (11 –lt 10)
{
Write-Host “This time, yes”
} elseif (20 –gt 40)
{
Write-Host “Third time was a charm”
} else {
Write-Host “You’re really terrible at math, aren’t you?”
}

If I run this in PowerShell, this is what I get back from the console:

That’s if/then constructs in a nutshell.

Do While
Do While is the simplest of the looping constructs in PowerShell. A looping construct
is basically a piece of code that does the same action over and over to a set of things
— in other words, it loops through a set of things, doing something to each of them,
until some condition changes or that set of things is exhausted.

There are two main types of looping constructs in PowerShell – -- a Do While loop,
and another one I will explain in the next section.

Do While is simply a construct that says to PowerShell, “do this to this set of things
until some condition I tell you becomes true.” It’s really as simple as that.

There are two ways to set up this construct. If you want a set of commands to
execute at least once, and then as many times as are necessary to satisfy whatever
condition you set up, you can simply put Do and a left curly brace on one line, the
commands to execute starting on a new line after the left curly brace. And then on a
new line, put the right curly brace followed by While and then, within parenthesis,
your conditional statement. The conditional statement, again, must be true or false.

For example, let’s set up a variable called numbers and give it an initial value of one.

$numbers = 1

Then, let’s set up a simple Do While construct that adds 1 to whatever number is
already in that variable, until the variable has the number 10 in it.

36 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

Do {
$numbers = $numbers + 1
Write-Host “The current value of the variable is $numbers”
} While ($numbers –lt 10)

Here’s what that looks like in the console:

You can also set up a Do While construct so that your set of commands only
executes when the condition is true. You just need to eliminate the do statement, and
only use while.

While ($numbers –lt 10) {
$numbers = $numbers + 1
Write-Host “The current value of the variable is $numbers”
}

ForEach
ForEach is the other looping construct. ForEach simply looks at a set of things and
pulls out one at a time to look at them and then, if you say so, perform some type of
action or set of commands on it.

Here’s how to think of this. Let’s say you had a list of users sent over from your HR
department, a list of employees who had resigned in the previous quarter. You need
to disable their Active Directory accounts. You can use a ForEach loop to work on
this. You would say: Dear PowerShell…

Here’s my list of users
ForEach (user in that list)
{
disable their log on ability in Active Directory
}
Note the familiar curly braces and their placement. (In developer parlance, what

I just showed you above in this example is called pseudocode — it’s a way to break
down how you would write code without taking the time to actually figure out the
correct syntax, just as a way of making sure you have a good game plan when you ap-
proach a problem for which you need to eventually write code to solve.)

One different part of a ForEach loop is the keyword in that lives within that paren-

37 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

thetical statement. That tells PowerShell to create a single variable to hold the values
that come out, one at a time, for your bigger set of things.

Let’s look at a real code example. Let’s just use a simple set of names in a variable.

$names = “Amy”,”Bob”,”Candice”,”Dick”,”Eunice”,”Frank”

When we make a list within a variable, we have created what is known as an array,
which is simply a big sort of matrix thing that PowerShell holds in memory that lets it
store a bunch of things at one time.

Let’s also initialize a count variable so we get a sense of how the loop is going.

$count = 0

Then, let’s use a ForEach loop to count how many names we have. Remember our
keyword in — we have to create a new variable that we can call anything we want.
This holds each single name that comes out of that list of names we have stored in
the variable $names.

I have called this new variable $singlename just to make it clear it is a new vari-
able that just holds a single value that comes out of a list. PowerShell works on that
single value and then moves on, grabbing another value from the bigger list, storing
it in the new single variable, acting on it based on whatever commands you have put
into the loop, and then lathering, rinsing and repeating.

ForEach ($singlename in $names) {
$count += 1
Write-Host “$singlename”
}

The += shorthand basically just says increment the number by whatever interval I
put next, in this case 1. I then added a Write-Host line with the $singlename variable
so we can get a glimpse into what value PowerShell is working on in the loop.

Finally, I’ll add a simple Write-Host line after the end (after the right curly brace,
that is) to display the count, so we can actually answer our question.

Write-Host “The total number of names is $count.”

Here’s what it looks like all put together and run in PowerShell:

That’s a ForEach loop.

38 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

The last word
That is, in a nutshell, how you can begin creating simple scripts and looping con-
structs in PowerShell. Use this information to build some scripts of your own today!

39 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

9 useful PowerShell tools
Microsoft’s mighty Windows administration framework
gets even better with the help of these tools and materials.
Almost all are free; the one for-fee tool is well worth the
cost. By Jonathan Hassell

Why PowerShell?
Ah, PowerShell. A simple blue window and some text has transformed the world of
Windows administration from a point-and-click GUI to scripts that automate every-
thing, as well as provide log rotation and identity lifecycle management and which
server receives which updates. With everything in the newest versions of Windows
Server accessible primarily via PowerShell and only secondarily (and sometimes even
not at all) via the server’s GUI, PowerShell knowledge has become a must. Some-
times, though, it is difficult to know whether you are proceeding correctly. Luckily,
there are other resources available that will help speed you along in your training and
your professional responsibilities. In this slideshow, I will highlight 9 resources for
immersing yourself in the PowerShell world. Whether you’re writing scripts, working
in a DevOps-oriented environment or administering software from vendors other
than Microsoft using PowerShell, there is something for everyone in this group of re-
sources. And best of all — they are all free, save for one excellent paid product. What
are you waiting for? Let’s dive in.

 Dell PowerGUI
Presumably left over from Dell’s 2012
acquisition of Quest, PowerGUI is a visual
complement to PowerShell. It makes
assembling scripts and getting things
done in PowerShell as simple as selecting
cmdlets that are appropriate for your task
and then dragging them into place. Perfect
for those who are new to PowerShell but
have a basic grasp of its concepts, Power-

GUI is an easy-to-use script editor that will probably advance your understanding of
assembling more complex and advanced scripts quicker than anything else — espe-
cially if you are a visual learner. Perhaps the most useful features of PowerGUI are the
Power Packs: Pre-built scripts that have been open-sourced by the user community
and made available to other PowerGUI users. These range from adding users to man-
aging switches; they can be customized and further improved upon, or simply baked
into whatever script you are currently writing, saving the time it would take you to

http://www.computerworld.com/article/2879205/powershell-for-beginners-scripts-and-loops.html
http://www.computerworld.com/article/2879205/powershell-for-beginners-scripts-and-loops.html
http://software.dell.com/products/powergui-freeware/
http://www.computerworld.com/article/2505236/it-management/update--dell-to-buy-quest-for--2-4-billion.html

40 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

reinvent the wheel.There was once a paid edition of PowerGUI with more advanced
features, but that edition was rolled up into the freeware product. PowerGUI does not
seem to have been updated for a while, but that does not make it any less useful, and
since it is freeware, you have nothing to lose by adding it to your arsenal. Freeware.

Sapien Technologies PowerShell
Studio 2015
More advanced PowerShell developers
and administrators need more advanced
tooling, and PowerShell Studio 2015 from
Sapien is the first place to look. When you
first open PowerShell Studio, you are im-
mediately reminded of Visual Studio and
for good reason: PowerShell Studio is as

much an integrated scripting environment as Visual Studio is an integrated devel-
opment environment (IDE). Features include: Ribbon, remote debugging support,
compiler features that let you turn scripts into executable files, support for multiple
versions of PowerShell (useful for targeting scripts to different servers running dif-
ferent levels of the Windows Server operating system), source control for checking
in and out script code and support for multiple developers. All of which make this
an obvious choice for shops where administrators and developers work together on
building advanced PowerShell scripts to handle a variety of scenarios. At $389 per
license, it is a little pricey. But considering all of the product’s functionality, if you live
in this part of the PowerShell world, it is well worth the cost of admission. 45-day
free trial, $389 per license.

Amazon AWS Tools for Windows
PowerShell
It’s not just Microsoft that is jumping
on the PowerShell bandwagon; even a
competitive cloud service like Amazon
Web Services recognizes that (a) Windows
Server is huge, (b) lots of administrators
are learning PowerShell, and (c) anything
that lets administrators manage Amazon

services more easily increases the likelihood that an Amazon server will stick in any
given enterprise. Thus the AWS Tools for Windows PowerShell were born. With
AWS Tools for Windows PowerShell, you can manage virtual machines and service
instances that are running in the Elastic Compute Cloud (EC2), or write scripts
that automate the management of any workloads you have running in a variety of
Amazon services. The tools install a bunch of cmdlets into your Windows PowerShell

http://software.dell.com/products/powergui-freeware/
http://www.sapien.com/software/powershell_studio
http://www.sapien.com/software/powershell_studio
http://www.sapien.com/software/powershell_studio
http://www.sapien.com/software/powershell_studio
http://aws.amazon.com/powershell/
http://aws.amazon.com/powershell/
http://aws.amazon.com/ec2/

41 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

“sphere of influence” and let you manage and script tasks like backing up data from
virtual machines in EC2 to the Simple Storage Service (S3) or logging and publishing
metrics to the Amazon CloudWatch personal dashboard.If you know PowerShell and
you use Amazon cloud services, these tools will be a great addition. Freeware.

Microsoft Script Browser for
Windows PowerShell ISE
The problem: You want to do something
in PowerShell. You know your outcome.
But you do not know how to get there
and, further, you have a sneaking suspi-
cion that someone, somewhere out there
on the Internet has already figured it out
and probably would tell you for free. What

if there were this free magic tool that would scour the TechNet Script Center — prob-
ably the most authoritative source for PowerShell scripts on Earth right now — and
find scripts that purport to do what you need? That is exactly what Microsoft Script
Browser claims to do.It also includes a built-in Script Analyzer function that will
read through your scripts and suggest improvements or changes to make based upon
scripting best practices. This tool plugs right into the Windows PowerShell Integrated
Scripting Environment, which you get for free as part of Windows. You might need to
install the feature on Windows client machines, but it should be installed by default
as part of the basic Windows Server image. Freeware, requires a Windows license and
Windows PowerShell ISE to be installed.

Adam Driscoll’s PowerShell
Tools for Visual Studio
If you are more on the “dev” side
of DevOps, then you probably use
Visual Studio as one of your tools

of choice. While Visual Studio has a lot going for it, it does not do a lot with Pow-
erShell out of the box. That is where Adam Driscoll’s PowerShell Tools for Visual
Studio project comes in. This project integrates within Visual Studio, brings syntax
highlighting and colors to the IDE, and adds IntelliSense support for automatically
completing syntax elements like variables, cmdlets and arguments as you type within
a Visual Studio window. It also extends options for configuring Visual Studio projects
so you can keep your scripting efforts organized and together, extends support for
scripting arguments with the MS Build compiler and supports script debugging via
breakpoint and breakpoint pane support. It also extends some testing features with
Pester and PSate test adapters. All in all, this is a free set of resources for making
Visual Studio more PowerShell savvy. If you like this after downloading it, consider

http://aws.amazon.com/powershell/
http://www.microsoft.com/en-us/download/details.aspx?id=42525
http://www.microsoft.com/en-us/download/details.aspx?id=42525
http://www.microsoft.com/en-us/download/details.aspx?id=42525
http://adamdriscoll.github.io/poshtools/
http://adamdriscoll.github.io/poshtools/

42 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

throwing Mr. Driscoll a few bucks for his efforts. Free, with donations solicited. Also
from MSDN.

Microsoft Windows
PowerShell Web Access, via
Control Panel
PowerShell Web Access is like
webmail but for PowerShell
cmdlets. You log into a webpage
that presents a Web-based console
where you can run cmdlets,
perform operations and do simple
remote administration tasks right

over the Internet. There’s no need for PowerShell, extensions or cmdlets to be
installed on the machine you are browsing with. This means that yes, you can run
PowerShell operations from your iPad if you have this feature enabled. Best of all,
it is free with a Windows Server license and is built right in. I do not see this in use
a lot, but I think it is very handy. As the saying goes, “You might not need this until
you need it, but when you do end up needing it, you need it very badly.”Be careful,
though, as opening this facility up to users outside your network is just an invitation
for security problems. Restrict access to the PowerShell Web Access site in IIS to only
IP addresses local to your corporate network. Or even better, restrict that access to a
few workstations on your local network and perhaps a static VPN address you can use
to perform administration tasks remotely.Free. Windows feature, installed through
Control Panel / Add and Remove Windows Features. You can also check out Micro-
soft’s help page on this.

PowerShell Training via the
Microsoft Virtual Academy
With great power comes the need for a
lot of training. PowerShell is a capable
language that can do so much. It marries
scripting with development and .NET
programming. It comes with a universe
of cmdlets. It has its own syntax. And
while I have (and will continue to) explain
PowerShell basics training on Computer-

world.com, those pieces just scratch the surface of all there is to know. Fortunately,
the Microsoft Virtual Academy contains hours of video training on getting to know
PowerShell, using it and making the language work for you. These courses include
information from stars such as the father of PowerShell, Jeffrey Snover, and distin-
guished technologists who have made (new) careers out of understanding every nook
and cranny of PowerShell. Perfect for lunch hours. Freeware.

http://adamdriscoll.github.io/poshtools/
https://visualstudiogallery.msdn.microsoft.com/c9eb3ba8-0c59-4944-9a62-6eee37294597
https://technet.microsoft.com/en-us/library/hh831611.aspx
http://www.microsoftvirtualacademy.com/training-courses/getting-started-with-powershell-3-0-jump-start
http://www.microsoftvirtualacademy.com/training-courses/getting-started-with-powershell-3-0-jump-start
http://www.computerworld.com/article/2893515/getting-started-with-powershell-the-basics.html
http://www.computerworld.com/article/2893515/getting-started-with-powershell-the-basics.html
http://www.microsoftvirtualacademy.com/training-courses/getting-started-with-powershell-3-0-jump-start

43 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

Master-PowerShell, an ebook
from Dr. Tobias Weltner
If you are a visual learner, then video
training is the best way to learn Pow-
erShell. For those of us more language
inclined, we can learn from Microsoft
MVP Dr. Tobias Weltner in his free ebook
cleverly titled Master-PowerShell. Weltner
covers a lot of ground in his book, includ-
ing variables, arrays and hashtables, the
pipeline, objects, conditions, loops, func-
tions, scripts, error handling, scope, text
and regular expressions. Also included:

XML, administrative work using the file system, Registry, processes, services, event
logs, WMI and users. He even includes a chapter on .NET and compiling for the
developers among us. The book is hosted by Idera, a popular administrative tool
developer, and can be found over on the PowerShell.com site, which is a useful com-
munity resource in its own right. Free.

VMware vSphere PowerCLI
Like Amazon, VMware has figured
out that, in some respects, making
nice with your competitors for the
benefit of your mutual custom-
ers is not a bad thing. To that end,
VMware created PowerCLI, a
command line-based environment

for managing VMware vSphere resources that integrates PowerShell throughout. The
PowerCLI environment is basically a bunch of cmdlets that interact with vSphere and
vCloud, and also provides interfaces based on C# and PowerShell for the various APIs
that are exposed by the VMware products. If you are a VMware shop and want to get
your hands on PowerCLI, head over to this link. Is it not great when everyone plays
nicely together in the sandbox? Freeware, with a free cmdlet reference available.

http://powershell.com/cs/blogs/ebookv2/default.aspx
http://powershell.com/cs/blogs/ebookv2/default.aspx
https://www.vmware.com/support/developer/PowerCLI/
http://pubs.vmware.com/vsphere-60/index.jsp?topic=%252Fcom.vmware.powercli.cmdletref.doc%252FOverview.html&__utma=207178772.498640042.1426176019.1426176019.1426176019.1&__utmb=207178772.0.10.1426176019&__utmc=207178772&__utmx=-&__utmz=207178772.1426176019.1.1.utmcsr=google%257Cutmccn=%2528organic%2529%257Cutmcmd=organic%257Cutmctr=%2528not%20provided%2529&__utmv=-&__utmk=74503057
https://www.vmware.com/support/developer/PowerCLI/
http://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware.powercli.cmdletref.doc%2FOverview.html

44 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

Understanding and using
objects in PowerShell
How to use PowerShell objects, how to tease more info and
functionality out of them and how objects can be useful in
scripting scenarios. By Jonathan Hassell

ONE OF the things most people do not realize about PowerShell, at least up
front, is that PowerShell is based on the .NET Framework, which means
that PowerShell can be considered a programming language. In fact, each
response you get from running a cmdlet in PowerShell, no matter how
simple or complex that cmdlet may be, is actually a .NET object. It might

look like text to you, but it can be programmatically manipulated in ways that Linux
and UNIX command line diehards can only dream about.

In this piece I’ll focus on using PowerShell objects, how to tease more info and
functionality out of them, and how objects can be useful in scripting scenarios.

What is an object?
It would probably help to know what an object is so that you can understand just how
useful this capability of PowerShell is.

Objects are essentially known quantities of something that programming lan-
guages can use, interact with, perform computations and transformations on, and in
general “consume.” Technically, an object is simply the programmatic representation
of anything. Objects are usually considered as two types of things: Properties, which
simply describe attributes of whatever the .NET object is representing, and methods,
which describe the types of actions (think verbs, or short instructions) that the .NET
object can undertake.

For example, let us consider a car as an example. If we were making a car into a
.NET object, then its properties would include its engine, doors, accelerator and
brake pedals, steering wheel and headlights. Its methods would include turn engine
on, turn engine off, open doors, close doors, press accelerator, release accelera-
tor, turn steering wheel left, turn steering wheel right, turn on headlights, turn off
headlights, turn on brights and turn off brights. (That is not an exhaustive list, but
it should serve to demonstrate to you that the properties of the car are a description
of its components, and the methods of the car describe how you can operate and
interact with the properties.)

In PowerShell, it is a simple matter to see an object’s properties and methods: Just
use the Get-Member cmdlet to view them. You can do this by piping the output of a

45 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

cmdlet. Remember that output is an object to the Get-Member cmdlet, like this:

GET-COMMAND | GET-MEMBER

TypeName: System.Management.Automation.AliasInfo

NAME MEMBERTYPE DEFINITION

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ResolveParameter Method System.Management.Automation.
ParameterMetadata ResolveParameter(string
name)

ToString Method string ToString()

CommandType Property System.Management.Automation.CommandTypes
CommandType {get;}

Definition Property string Definition {get;}

Description Property string Description {get;set;}

Module Property psmoduleinfo Module {get;}

ModuleName Property string ModuleName {get;}

Name Property string Name {get;}

Options Property System.Management.Automation.
ScopedItemOptions Options

You can see in the middle column that the different methods and properties are de-
lineated, but what is that third column? Those are called data types, and they basically
show the classification of answer that will be returned by that method or property
(for instance, telling if something is yes or no or true or false would be a Boolean type,
whereas a response consisting of text would generally be a string). We will see data
types coming into action a little later in our PowerShell series, so stay tuned for that.

You will find as you get into more day-to-day administration with PowerShell that
you will be using this Get-Method cmdlet a lot, and the reason is because it is going
to tell you exactly how you can interact with various objects.

For example, let us talk about finding files on a shared drive of a certain type. How
do you end up knowing exactly what cmdlets and syntax to use to work out how to
find specific files with a certain type of file extension? It’s through the use of these
methods and properties and the PowerShell pipeline, which of course pipes objects
and responses through from one cmdlet to the next.

http://www.computerworld.com/article/2537317/microsoft-windows-powershell-tips-and-tricks.html

46 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

An example
Say you have been infected with Cryptolocker on one of your business’ machines.
This is a nasty bug that is ransomware; it is malware that silently encrypts the files
it finds in a couple of places on your machine (My Documents and mapped drives
being a couple of them). And then the bug makes you pay several hundred dollars in
untraceable Bitcoin or Green Dot prepaid debit cards to get the key to decrypt them.
You either pay up or you lose access to your files.

In our example, let’s assume you were able to find the infection before it had
the time to encrypt all your files. You immediately shut down the machine, so the
encryption process stopped, but as part of your diagnosis of what happened, you
need to figure out a list of all the files that were modified in the last day or so. There
is a cmdlet called Get-ChildItem, which is your tool of choice when you want to grab
something out of a giant container of items -- in this case the file system.

So we know to start with Get-ChildItem, but how do we know what parameters to
put along with it?

First, we can check out get-help get-childitem, which will show us that the syntax
starts off with -Path, so we know that if we are concerned with potentially encrypted
data at the mapped drive S: where shared documents are stored, we would use -Path
S:\ to establish where to look.

But what about subdirectories, subfolders, and any sort of nested structure we
want to examine as well? From get-help get-childitem we also see the -Recurse
parameter; recursive checking means the program will start at the top and then
“recurse,” or walk down, the hierarchy of files until everything has been properly
examined. We’ll add that to the cmdlet as well.

That brings us to this partial cmdlet:

Get-ChildItem -Path S:\ -Recurse

You can actually run that, and PowerShell will spit out a list of every single file on
the S: volume separated out by subdirectory. But we need to examine more about
that huge list of files, so we will use the pipeline function to send that output into
another cmdlet.

But what cmdlet helps us select a portion of a big set of data for further processing?
That is the job of the Where-Object cmdlet.

So our cmdlet takes on further shape and body:

Get-ChildItem -Path S:\ -Recurse | Where-Object

Remember that we add in curly braces, and then within them we can use the $_,
or as I like to affectionately call it, “that thing,” to represent the output of a previous
cmdlet that is being piped into a new cmdlet. Then, we add a period or dot and then
the name of a property of that object that is represented by $.

Here is what we have so far:

Get-ChildItem -Path S:\ -Recurse | Where-Object {$_.

But what is Where-Object going to filter? That’s where we need to find out what

http://www.computerworld.com/article/2485214/microsoft-windows/cryptolocker-how-to-avoid-getting-infected-and-what-to-do-if-you-are.html

47 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

the properties of Get-ChildItem are; we can use those properties to “tune the
antenna,” so to speak, of Where-Object so that it is filtering on the right criteria. To
find those properties, let us consult with Get-Member.

GET-CHILDITEM | GET-MEMBER

TypeName: System.IO.DirectoryInfo

NAME MEMBERTYPE DEFINITION

LastAccessTime Property datetime LastAccessTime {get;set;}

LastAccessTimeUtc Property datetime LastAccessTimeUtc {get;set;}

LastWriteTime Property datetime LastWriteTime {get;set;}

LastWriteTimeUtc Property datetime LastWriteTimeUtc {get;set;}

Name Property string Name {get;}

Parent Property System.IO.DirectoryInfo Parent {get;}

Root Property System.IO.DirectoryInfo Root {get;}

BaseName ScriptProperty System.Object BaseName {get=$this.Name;}

TypeName: System.IO.FileInfo

NAME MEMBERTYPE DEFINITION

IsReadOnly Property bool IsReadOnly {get;set;}

LastAccessTime Property datetime LastAccessTime {get;set;}

LastAccessTimeUtc Property datetime LastAccessTimeUtc {get;set;}

LastWriteTime Property datetime LastWriteTime {get;set;}

LastWriteTimeUtc Property datetime LastWriteTimeUtc {get;set;}

Length Property long Length {get;}

Name Property string Name {get;}

BaseName ScriptProperty System.Object BaseName {get=if ($this.Extension.Length -gt 0){$this.Name.Re…

VersionInfo ScriptProperty System.Object VersionInfo {get=[System.Diagnostics.FileVersionInfo]::GetVer…

Note we have two tables of information returned: One for type System.
IO.DirectoryInfo, and the other for System.IO.FileInfo. Since we are looking for
information on specific files, we will use the latter.

Looking at that second table, we see two properties that might be interesting to us
for completing our task: LastWriteTime and LastWriteTimeUtc. This is what we’re

48 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

looking for! We need the last time that a file was written to.
In this case, just to make things simple, we will use LastWriteTime rather than

worrying about converting timezones to Greenwich Median Time, although you
might have a specific purpose for doing so as you progress in your scripting capabili-
ties.

So to put together our fuller picture, here is where we are:

Get-ChildItem -Path S:\ -Recurse | Where-Object {$_.LastWriteTime

So we have identified the last write time, but we obviously need to do something
with that; we need to ask ourselves, in constructing this command, the question:
“Where the last write time is what, exactly?” So we need a comparison operator.

You may recall from a previous PowerShell story that we can use -lt for “less than”
and -gt for “greater than.” So in order to figure out what was written in the last day or
so, we can pick a date two days ago. In this example, today is May 14, 2015, so if I’m
trying to figure out what files have been touched in the last 24 hours, I would want to
know files where the last write time is greater than May 12, 2015.

We write this out in standard MM/DD/YYYY format and then enclose it in quotes
as it is considered a string. Then we will add the closing curly brace because our com-
parative clause is complete, and we have the following cmdlet built:

Get-ChildItem -Path S:\ -Recurse | Where-Object {$_.LastWriteTime -gt “05/12/2015”}

Run that, and you will get a list of every file on the S: volume that has been written
to on 5/12/2015 or after -- exactly what we were looking for. And we did that by
understanding that (a) the output of Get-ChildItem is an object, and (b) we can find
the properties of the Get-ChildItem output object using Get-Member and use those
properties to (c) pipe to Where-Object to find specific information about a subset of
that output.

Extrapolating how to use objects
There are all sorts of convenient ways to use objects and their properties and
methods. With all output being an object, it means you can address all sorts of attri-
butes and characteristics of whatever it is you are working on.

For instance, you can display information in a table format that eliminates all of
the other facts you do not have any interest in and laser focuses on the facts in which
you are interested. For example, let’s look at what is available for Get-Service.

Get-Service | Get-Member

If I run that, I will see in the table that results that Status is a property and Start
and Stop are methods. So if I wanted to find out all the services on a machine that
were in the Stopped state, and then start those services, I might want to build the
following cmdlet:

Get-Service | Where-Object {$_.Status -eq “Stopped”} | Start-Process.

What if I wanted to find all of the Exchange mailboxes that been created in my lab

http://www.computerworld.com/article/2879205/powershell-for-beginners-scripts-and-loops.html?nsdr=true

49 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

Exchange environment and then delete those mailboxes because I am done with my
experiment and want to restore my test deployment? First, I would want to see the
properties available for the Get-Mailbox cmdlet, a core cmdlet of Exchange or Office
365:

Get-Mailbox | Get-Member

I would see, among dozens of other properties, the WhenChanged property. This
might work, so I would test this out:

Get-Mailbox | Format-List name,WhenChanged

This gives me a list of mailboxes with the mailbox-friendly name and the value
of the WhenChanged property. Looks like what I need, so I will modify the above
cmdlet not to display a list but to receive the output of Get-Mailbox into a Where-
Object filter, where I will grab the WhenChanged output and pass only those that
meet my comparison criteria via the pipeline to the Remove-Mailbox cmdlet for
deletion. It ends up looking like this:

Get-Mailbox | Where-Object {$._WhenChanged -gt “05/07/2015”} | Remove-Mailbox

Voila.

The last word
Objects are powerful differentiators that make PowerShell a rich and capable
command-line environment. Understanding how to use objects and dig into their
properties and methods unlocks the entire universe of PowerShell’s abilities for you.
Take some time to play around with this.

50 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

Scriptshow: Performing
five common
administrative tasks
using Windows
PowerShell
Want to add a bunch of users without going out of your
mind? We show you how to do that, and more. By Jonathan
Hassell

SOMETIMES IT’S easiest to learn something new simply by using it, and to my
mind PowerShell is no exception. Often we discover new capabilities and
features in looking at what tasks other people are accomplishing using Pow-
erShell, and specifically, looking at how they’re using the scripting language.

In this scriptshow, I take five common tasks and show how to accomplish
them using PowerShell. The tasks are:
NN Adding a user
NN Deleting a specific attachment (like one that contained in a virus or malware

payload) from a set of Exchange mailboxes
NN Handling the mailing-list deletion of employees who are leaving the company for

any reason
NN Working with CSV files within PowerShell
NN Connecting to certain Microsoft cloud services from your on-premises servers
I provide the cmdlets or a script, and then walk you through how I put the cmdlets

or scripts together so that you can see the logic of why the scripts work the way they
do. You can use these as a launchpad of sorts for further customization or for creating
your own daily administrative task scripts, whatever you would find useful. I hope
this gives you a real taste of the practical applicability that the PowerShell scripting
language can bring to your IT life.

With that said, let us get on with it!

https://msdn.microsoft.com/en-us/mt173057.aspx
http://www.computerworld.com/article/2893515/data-center/getting-started-with-powershell-the-basics.html
http://www.computerworld.com/article/2893515/data-center/getting-started-with-powershell-the-basics.html

51 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

1. Adding users
Have you ever had a batch of users you needed to create accounts for, but you did
not want to page through the wizards in Active Directory Users and Computers?
This kind of rote, repetitive task is exactly what Windows PowerShell is designed to
handle.

Import-Module ActiveDirectory
Import-Csv “C:\powershell\users.csv” | ForEach-Object {
$userPrincipal = $_.”samAccountName” + “@yourdomain.local”
New-ADUser -Name $_.Name
-Path $_.”ParentOU”
-SamAccountName $_.”samAccountName”
-UserPrincipalName $userPrincipal
-AccountPassword (ConvertTo-SecureString “cheeseburgers4all”
-AsPlainText -Force)
-ChangePasswordAtLogon $true
-Enabled $true
Add-ADGroupMember “Office Users”
$_.”samAccountName”;
}

In this script, we use the Import-CSV cmdlet, which knows how to read .CSV-
formatted files. We tell the Import-CSV cmdlet that each row of the CSV data located
in C:\powershell called users.csv contains information in three columns: The Name
of the user; the samAccountName of the user, which is basically the login ID for the
user; and the organizational unit (OU) of Active Directory that the user needs to live
in.

We’re also telling the cmdlet that we are using the column samAccount Name to
create the login ID for the user by marrying the value that lives in that column with
the string “@yourdomain.local” to complete the user principal name (UPN).

From there, we loop through the file using ForEach-Object and send that as-
sembled string (which is stored in the PowerShell variable called $userPrincipal).
We assign the default password to each user as “cheeseburgers4all” and then set the
Active Directory flag to require the user to change the password at first logon. At the
end of the script, we then add all of these accounts to the Active Directory security
group called Office Users.

2. Deleting dangerous or objectionable content from Exchange
mailboxes
I was inspired by PowerShell MVP Mike Robbins’ post on removing phishing messag-
es from Exchange mailboxes. In this day and age I think Cryptolocker and CryptoWall
ransomware infections are much more nefarious than phishing. The most recent
infections go after network drives and are not well picked up and covered by client
anti-malware solutions, so if you are not careful you could well pick up an infection.

For this reason, when you see a suspect message, you might want to just get it out

http://mikefrobbins.com/2013/12/19/using-powershell-to-remove-phishing-emails-from-user-mailboxes-on-an-exchange-server/
http://www.computerworld.com/article/2485214/microsoft-windows/cryptolocker-how-to-avoid-getting-infected-and-what-to-do-if-you-are.html

52 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

of any mailbox that it is located in — a kind of mass deletion, if you will. If you are
running Exchange 2010 or later, you can take care of that from within a PowerShell
window.

Add-PSSnapin -Name
Microsoft.Exchange.Management.PowerShell.E2010
Get-Mailbox -ResultSize Unlimited |
Search-Mailbox -SearchQuery ‘Subject:”*Please review the attached invoice*”’ -Delete-

Content |
Where-Object {$_.ResultItemsCount}

In this script, we add the Exchange tools to our PowerShell window and then put
two cmdlets together. The first one is a generic Get-Mailbox cmdlet and we also let
PowerShell know that we are targeting all of the mailboxes on the system, so we tell
it to give us an unlimited result size.

The second cmdlet searches the content within the mailbox and searches the
subject field of every message inside each mailbox for the string we provide in the
cmdlet parameter. In this case, “Please review the attached invoice” is actually the
subject line of a Cryptolocker infection message I just received as I was writing this.
The –DeleteContent eliminates the message, and the Where-Object controls the
display of the results within the console window.

Before you do this, you might consider adding the –whatif flag to this transaction
so that you can see the impact of the cmdlet’s intended deletion across your entire
deployment. Also consider the performance implications: PowerShell searching this
way is not, as we would say in the South, too terribly efficient, so for a large organiza-
tion with tens of thousands of mailboxes, you can expect this operation to consume a
fair amount of resources for a while.

3. Elegantly handling departed employees and their distribution
list memberships
It happens in every organization: Employees leave. They are terminated, they leave
voluntarily, they get another job, they retire. Whatever the reason, you need to deal
with their accounts. If your organization is like many others, users wind up embed-
ded in tons of distribution lists per department, per project, per location and so on.

We often find departed employee accounts still around, just without any rights or
security group memberships. Most identity-lifecycle best practices suggest you should
not simply delete accounts when employees leave; often, their mailboxes live on as
shared resources for the remaining employees who might need to unlock some data
stored within them.

However, these mailboxes can quickly fill up with distribution list messages that
are completely unnecessary. So how do you keep a mailbox active but find all of its
various distribution list memberships and unsubscribe from them? That’s where this
set of cmdlets comes in.

New-DistributionGroup –Name “Sayonara” –OrganizationalUnit “yourdomain.local”

53 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

–SamAccountName “Sayonara” –Type “Security” Import-CSV separatedemployees.csv |
ForEach {Add-DistributionGroupMember -Identity “Sayonara” -Member $_.Name}

$groupstounsubscribe=get-distributiongroup -filter {DisplayName -ne “Sayonara”}
Get-DistributionGroupMember Sayonara | remove-distributiongroupmember $group-

stounsubscribe

First, we create a new distribution group called Sayonara, the members of which
will be the accounts of departed employees. We will then procure a CSV file from
human resources that lists their user principal names. We will feed that file into
PowerShell, again using the Import-CSV cmdlet, and then say that for every entry
(row) in that CSV file, we should add that login ID to the distribution group called
Sayonara.

After this, we initialize a variable called groupstounsubscribe. To populate this
variable we ask PowerShell to get a list of all Exchange distribution groups, and then
filter it down to only those in which the name is not equal to Sayonara. In other
words, the lists stored in this variable will be all lists except our new Sayonara list.

In the final step of this set of cmdlets, we ask PowerShell to grab all of the names
within the distribution group Sayonara — these are the ones we want to remove from
the other groups — and then pipe that list into the remove-distributiongroupmember
cmdlet using the list of groups (except Sayonara) to compare against.

What have we accomplished? All the accounts that are a member of Sayonara will
get removed from any distribution group that is NOT Sayonara. So the only new mail
a departed employee account’s mailbox will receive is mail addressed directly to that
mailbox. A neat and tidy solution.

(Hat tip to this post by David Shackelford for the inspiration.)

4. Create a new comma separated values (.CSV) file and populate
it with data
This script is fairly simple but it has a number of interesting implications and is very
easy to modify for your specific scenarios. We have used the Import-CSV cmdlet a
couple of times in this scriptshow already, but I want to show that PowerShell can
also write to CSV files as well, which is really useful to get data out of a system, play
around with it in Excel and then re-import it into another cmdlet later.

Get-Mailbox | Select-Object
Name,OrganizationalUnit,WindowsEmailAddress | Export-CSV
C:\powershell\export.csv

In this case, what we are doing is using the Exchange Get-Mailbox cmdlet to get a
list of all mailboxes on a deployment. We will pipe that output to the Select-Object
cmdlet, which grabs specific parts of whatever it is sent; in this case we are getting
the name, organizational unit and default email address properties of each mailbox.
And then we are piping just those properties over to the Export-CSV cmdlet, which
will write them conveniently to the CSV file at the directory path I included above.

If you are wondering how you can easily grab all of the properties you can use

http://exchange-powershell.com/server-management/handy-way-to-manage-distro-list-maintenance/

54 C O M P U T E R W O R L D I N T R O D U C T I O N T O W I N D O W S P O W E R S H E L L

WindowsPowerShellIntroduction to

within a CSV, just use a get cmdlet and format the output as a list. For example, “get-
mailbox jhassell | fl” will show you all of the different properties you can use with the
Select-Object cmdlet in the example above to populate the columns in your CSV file.

5. Easily connect to Exchange Online or Office 365 from your
hybrid deployment
If you are running a hybrid Exchange deployment, chances are you are connecting
up to the Office 365 portal a lot. If you’ve tried to do a lot of administrative work with
PowerShell in this scenario, you know it is a bit of a rigmarole to set up the remot-
ing necessary to run PowerShell cmdlets against the Office 365 servers. Below, I’ve
created a script that takes care of the setup for you, so that when you are ready to go,
you just run the script and enter your Office 365 administrative credentials.

$URL = “https://ps.outlook.com/powershell”
$Credentials = Get-Credential -Message “Enter your Exchange Online or Office 365 admin-

istrator credentials”
$CloudSession = New-PSSession -ConfigurationName Microsoft.Exchange -ConnectionUri

$URL -Credential $Credentials -Authentication Basic -AllowRedirection -Name “Office 365/
Exchange Online”

Import-PSSession $CloudSession –Prefix “365”

First off, we declare a variable to store the location on the Internet where we’re
sending all of these cmdlets — think of it like a Web service. Then, we set up a
variable to securely hold our username and password. The Get-Credential cmdlet
pops up a window where you can enter credentials, and the variable will hold those
credentials as secure strings. The third variable starts a new PowerShell remoting
session using the specific remoting language necessary to connect up to Office 365
or Exchange Online (this works for both offerings). Finally, the Import-PSSession
merges that session with your current console, letting you work directly within it.

This particular script is specific to hybrid deployments because sometimes
namespaces for cmdlets collide. PowerShell does not always know immediately how
to sort out — say, if you ran New-Mailbox — whether you wanted to create that new
mailbox on your local deployment or up in the cloud.

To fix this, this script loads the Office 365 namespace of cmdlets with the prefix
365. So all Exchange cmdlets that should run in the cloud should use the 365 prefix, a
la New-365Mailbox or Get-365DistributionGroup. All Exchange cmdlets that should
run on your local deployment should be left as they are by default. This makes it very
easy to distinguish one from the other.

If you want to run this script in a purely cloud environment, however, you can just
remove the prefix “365” from the last line of the script and everything will return to
its default.

Remember, to save this as a script, just put the cmdlets above into a text file and
then save the file with an extension of .PS1. Then, from the PowerShell console
window, type in .\script.ps1 (that’s period, backslash, name of file) to run the script.

