
Mnemonic: aaload

Operation: Load reference from array.

Opcode: 50 (0x32)

Operands: None

Operand Stack: Before: …, arrayref, index >>>
After: …, value

Description: arrayref must be of reference type and must refer to an array whose components
are of reference type. Furthermore, index must be of int type. Both arrayref and
index pop from the operand stack. The reference value in the array component at
index retrieves and pushes to the operand stack.

Runtime
Exceptions:

This instruction throws a NullPointerException if arrayref is null.

This instruction throws an ArrayIndexOutOfBoundsException if index is not
within the bounds of the arrayref-referenced array.

http://www.go2pdf.com

Mnemonic: aastore

Operation: Store into reference array.

Opcode: 83 (0x53)

Operands: None

Operand Stack: Before: …, arrayref, index, value >>>
After: …

Description: arrayref must be of reference type and must refer to an array whose components
are of reference type. Furthermore, index must be of int type and value must be
of reference type. arrayref, index, and value pop from the operand stack. The
reference value stores as the array component at index.

value’s type must be assignment compatible with the type of the arrayref-
referenced array’s components. Assignment of a value of reference type S (source)
to a variable of reference type T (target) is allowed only when type S supports all
the operations defined on type T. The detailed rules:

1) If S is a class type, then:

1.1) If T is a class type, then S must be the same class as T, or S must be a subclass
of T.

1.2) If T is an interface type, S must implement interface T.

2) If S is an interface type, then:

2.1) If T is a class type, then T must be Object.

2.2) If T is an interface type, then T must be the same interface as S or a
superinterface of S.

3) If S is an array type, namely SC[] (an array of components of type SC), then:

3.1) If T is a class type, then T must be Object.

3.2) If T is an array type TC[] (an array of components of type TC), then one of the
following must be true:

3.2.1) TC and SC are the same primitive type.

3.2.2) TC and SC are reference types, and type SC is assignable to TC by these
runtime rules.

3.3) If T is an interface type, T must be one of the interfaces implemented by
arrays.

http://www.go2pdf.com

Runtime
Exceptions:

This instruction throws a NullPointerException if arrayref is null.

This instruction throws an ArrayIndexOutOfBoundsException if index is not
within the bounds of the arrayref-referenced array.

This instruction throws an ArrayStoreException if arrayref is not null and
value’s actual type is not assignment compatible with the actual type of the array’s
components.

http://www.go2pdf.com

Mnemonic: aconst_null

Operation: Push null.

Opcode: 1 (0x01)

Operands: None

Operand Stack: Before: … >>>
After: …, null

Description: Push the null object reference to the operand stack.

Notes: A specific value for null is not mandated by the JVM specification.

http://www.go2pdf.com

Mnemonic: aload

Operation: Load reference from local variable.

Opcode: 25 (0x19)

Operands: index

Operand Stack: Before: … >>>
After: …, objectref

Description: index is an unsigned byte that must be an index into the current stack frame’s local
variable array. Furthermore, the local variable at index must contain a reference.
The objectref in the local variable at index pushes to the operand stack.

Notes: This instruction cannot be used to load a value of type returnAddress from a
local variable to the operand stack. This asymmetry with astore is intentional.

This instruction’s opcode can be used with the wide instruction’s opcode to access
a local variable using a two-byte unsigned index.

http://www.go2pdf.com

Mnemonic: aload_0

Operation: Load reference from local variable 0.

Opcode: 42 (0x2A)

Operands: None

Operand Stack: Before: … >>>
After: …, objectref

Description: 0 must be an index into the current stack frame’s local variable array.
Furthermore, the local variable at 0 must contain a reference. The objectref in the
local variable at 0 pushes to the operand stack.

Notes: This instruction cannot be used to load a value of type returnAddress from a
local variable to the operand stack. This asymmetry with astore_0 is intentional.

This instruction is the same as aload (with a 0 index operand), except that the 0 in
aload_0 is implicit.

http://www.go2pdf.com

Mnemonic: aload_1

Operation: Load reference from local variable 1.

Opcode: 43 (0x2B)

Operands: None

Operand Stack: Before: … >>>
After: …, objectref

Description: 1 must be an index into the current stack frame’s local variable array.
Furthermore, the local variable at 1 must contain a reference. The objectref in the
local variable at 1 pushes to the operand stack.

Notes: This instruction cannot be used to load a value of type returnAddress from a
local variable to the operand stack. This asymmetry with astore_1 is intentional.

This instruction is the same as aload (with a 1 index operand), except that the 1 in
aload_1 is implicit.

http://www.go2pdf.com

Mnemonic: aload_2

Operation: Load reference from local variable 2.

Opcode: 44 (0x2C)

Operands: None

Operand Stack: Before: … >>>
After: …, objectref

Description: 2 must be an index into the current stack frame’s local variable array.
Furthermore, the local variable at 2 must contain a reference. The objectref in the
local variable at 2 pushes to the operand stack.

Notes: This instruction cannot be used to load a value of type returnAddress from a
local variable to the operand stack. This asymmetry with astore_2 is intentional.

This instruction is the same as aload (with a 2 index operand), except that the 2 in
aload_2 is implicit.

http://www.go2pdf.com

Mnemonic: aload_3

Operation: Load reference from local variable 3.

Opcode: 45 (0x2D)

Operands: None

Operand Stack: Before: … >>>
After: …, objectref

Description: 3 must be an index into the current stack frame’s local variable array.
Furthermore, the local variable at 3 must contain a reference. The objectref in the
local variable at 3 pushes to the operand stack.

Notes: This instruction cannot be used to load a value of type returnAddress from a
local variable to the operand stack. This asymmetry with astore_3 is intentional.

This instruction is the same as aload (with a 3 index operand), except that the 3 in
aload_3 is implicit.

http://www.go2pdf.com

Mnemonic: anewarray

Operation: Create new array of reference.

Opcode: 189 (0xBD)

Operands: indexbyte1, indexbyte2

Operand Stack: Before: …, count >>>
After: …, arrayref

Description: count, which must be of int type, pops from the operand stack and represents the
number of array components to be created. The unsigned indexbyte1 and
indexbyte2 construct an index into the current class’s runtime constant pool, where
the index value is (indexbyte1<<8)|indexbyte2. The runtime constant pool item at
that index must be a symbolic reference to a class, array, or interface type. The
named type resolves, a new array with that type’s components and a count length
creates from the garbage-collected heap, and an arrayref reference to this new
array object pushes to the operand stack. All array components initialize to null,
which is the default value for reference types.

Linking
Exceptions:

During resolution of the symbolic reference to the class, array, or interface type,
any of the exceptions documented in section 5.4.3.1 of the JVM specification can
be thrown.

Runtime
Exceptions:

This instruction throws a NegativeArraySizeException if count is less than zero.

Notes: Use this instruction to create either a one-dimensional array of object references or
part of a multidimensional array.

http://www.go2pdf.com

Mnemonic: areturn

Operation: Return reference from method.

Opcode: 176 (0xB0)

Operands: None

Operand Stack: Before: …, objectref >>>
After: [empty]

Description: objectref must be of reference type and must refer to an object whose type is
assignment compatible with the type represented by the current method’s return
descriptor. If the current method is synchronized, the monitor acquired or
reentered on that method’s invocation is released or exited (respectively) as if by
executing the monitorexit instruction. If no exception is thrown, objectref pops
from the current stack frame’s operand stack and pushes to the operand stack of
the invoker’s stack frame. Any other values on the current method’s operand stack
discard.

The interpreter returns control to the current method’s invoker, reinstating the
invoker’s stack frame as the current stack frame.

Runtime
Exceptions:

This instruction throws an IllegalMonitorStateException if the current method is
a synchronized method and the current thread is not the owner of the monitor
acquired or reentered on invocation of the method.

This instruction also throws an IllegalMonitorStateException if the JVM
implementation enforces the rules on structured lock usage, and the number of
lock operations performed by a thread on a lock does not match the number of
unlock operations by that thread on that lock (whether the method invocation
completes normally or abruptly).

http://www.go2pdf.com

Mnemonic: arraylength

Operation: Get length of array.

Opcode: 190 (0xBE)

Operands: None

Operand Stack: Before: …, arrayref >>>
After: …, length

Description: arrayref must be of reference type and must refer to an array. It pops from the
operand stack. The length of the array it references is determined, and pushes to
the operand stack as an int.

Runtime
Exceptions:

This instruction throws an NullPointerException if arrayref is null.

http://www.go2pdf.com

Mnemonic: astore

Operation: Store reference into local variable.

Opcode: 58 (0x3A)

Operands: index

Operand Stack: Before: …, objectref >>>
After: …

Description: index is an unsigned byte that must be an index into the current stack frame’s local
variable array. Furthermore, the objectref on the top of the operand stack must be
of returnAddress type or of reference type. It pops from the operand stack and
the value of the local variable at index sets to objectref.

Notes: The Java programming language uses this instruction with an objectref of type
returnAddress when implementing finally clauses.

The aload instruction cannot be used to load a value of type returnAddress from
a local variable to the operand stack. This asymmetry with astore is intentional.

This instruction’s opcode can be used with the wide instruction’s opcode to access
a local variable using a two-byte unsigned index.

http://www.go2pdf.com

Mnemonic: astore_0

Operation: Store reference into local variable 0.

Opcode: 75 (0x4B)

Operands: None

Operand Stack: Before: …, objectref >>>
After: …

Description: 0 must be an index into the current stack frame’s local variable array.
Furthermore, the objectref on the top of the operand stack must be of
returnAddress type or of reference type. It pops from the operand stack and the
value of the local variable at 0 sets to objectref.

Notes: The Java programming language uses this instruction with an objectref of type
returnAddress when implementing finally clauses.

The aload_0 instruction cannot be used to load a value of type returnAddress
from a local variable to the operand stack. This asymmetry with astore_0 is
intentional.

This instruction’s opcode can be used with the wide instruction’s opcode to access
a local variable using a two-byte unsigned index.

http://www.go2pdf.com

Mnemonic: astore_1

Operation: Store reference into local variable 1.

Opcode: 76 (0x4C)

Operands: None

Operand Stack: Before: …, objectref >>>
After: …

Description: 1 must be an index into the current stack frame’s local variable array.
Furthermore, the objectref on the top of the operand stack must be of
returnAddress type or of reference type. It pops from the operand stack and the
value of the local variable at 1 sets to objectref.

Notes: The Java programming language uses this instruction with an objectref of type
returnAddress when implementing finally clauses.

The aload_1 instruction cannot be used to load a value of type returnAddress
from a local variable to the operand stack. This asymmetry with astore_1 is
intentional.

This instruction’s opcode can be used with the wide instruction’s opcode to access
a local variable using a two-byte unsigned index.

http://www.go2pdf.com

Mnemonic: astore_2

Operation: Store reference into local variable 2.

Opcode: 77 (0x4D)

Operands: None

Operand Stack: Before: …, objectref >>>
After: …

Description: 2 must be an index into the current stack frame’s local variable array.
Furthermore, the objectref on the top of the operand stack must be of
returnAddress type or of reference type. It pops from the operand stack and the
value of the local variable at 2 sets to objectref.

Notes: The Java programming language uses this instruction with an objectref of type
returnAddress when implementing finally clauses.

The aload_2 instruction cannot be used to load a value of type returnAddress
from a local variable to the operand stack. This asymmetry with astore_2 is
intentional.

This instruction’s opcode can be used with the wide instruction’s opcode to access
a local variable using a two-byte unsigned index.

http://www.go2pdf.com

Mnemonic: astore_3

Operation: Store reference into local variable 3.

Opcode: 78 (0x4E)

Operands: None

Operand Stack: Before: …, objectref >>>
After: …

Description: 3 must be an index into the current stack frame’s local variable array.
Furthermore, the objectref on the top of the operand stack must be of
returnAddress type or of reference type. It pops from the operand stack and the
value of the local variable at 3 sets to objectref.

Notes: The Java programming language uses this instruction with an objectref of type
returnAddress when implementing finally clauses.

The aload_3 instruction cannot be used to load a value of type returnAddress
from a local variable to the operand stack. This asymmetry with astore_3 is
intentional.

This instruction’s opcode can be used with the wide instruction’s opcode to access
a local variable using a two-byte unsigned index.

http://www.go2pdf.com

Mnemonic: athrow

Operation: Throw exception or error.

Opcode: 191 (0xBF)

Operands: None

Operand Stack: Before: …, objectref >>>
After: objectref

Description: objectref must be of reference type and must refer to an object that is an instance
of class Throwable or a Throwable subclass. It pops from the operand stack, and
then is thrown by searching the current method for the first exception handler that
matches objectref’s class.

If an exception handler that matches objectref is found, it contains the location of
the code that handles this exception. Register pc resets to that location, the current
stack frame’s operand stack clears, objectref pushes back to the operand stack, and
execution continues.

If no matching exception handler is found in the current stack frame, the stack
frame pops. If the current stack frame represents an invocation of a synchronized
method, the monitor acquired or reentered on the method’s invocation releases or
exits (respectively) as if by executing the monitorexit instruction. The stack frame
of its invoker is reinstated, if the stack frame exists, and the objectref rethrows. If
no such stack frame exists, the current thread exits.

Runtime
Exceptions:

This instruction throws a NullPointerException instead of objectref if objectref is
null.

This instruction throws an IllegalMonitorStateException if the current method is
a synchronized method and the current thread is not the owner of the monitor
acquired or reentered on invocation of the method.

This instruction also throws an IllegalMonitorStateException if the JVM
implementation enforces the rules on structured lock usage, and the number of
lock operations performed by a thread on a lock does not match the number of
unlock operations by that thread on that lock (whether the method invocation
completes normally or abruptly).

Notes: If a handler for the thrown exception or error matches in the current method,
athrow discards all the values on the operand stack and then pushes the thrown
object to the operand stack. However, if no handler matches in the current method
and the exception throws farther up the method invocation chain, the operand
stack of the method (if any) that handles the exception clears and objectref pushes
to the empty operand stack. All intervening stack frames from the method that
threw the exception up to (but not including) the method that handles the
exception discard.

http://www.go2pdf.com

Mnemonic: baload

Operation: Load byte or boolean from array.

Opcode: 51 (0x33)

Operands: None

Operand Stack: Before: …, arrayref, index >>>
After: …, value

Description: arrayref must be of reference type and must refer to an array whose components
are of byte or boolean type. Furthermore, index must be of int type. Both
arrayref and index pop from the operand stack. If the array’s components are of
type byte, the array component at index retrieves and sign-extends to an int value.
If the array’s components are of type boolean, the array component at index
retrieves and zero-extends to an int value. In either case, the resulting value
pushes to the operand stack.

Runtime
Exceptions:

This instruction throws a NullPointerException if arrayref is null.

This instruction throws an ArrayIndexOutOfBoundsException if index is not
within the bounds of the arrayref-referenced array.

Notes: Sun’s JVM implementation implements boolean arrays as arrays of 8-bit values.

http://www.go2pdf.com

Mnemonic: bastore

Operation: Store into byte or boolean array.

Opcode: 84 (0x54)

Operands: None

Operand Stack: Before: …, arrayref, index, value >>>
After: …

Description: arrayref must be of reference type and must refer to an array whose components
are of byte or boolean type. Furthermore, index and value must both be of int
type. arrayref, index, and value pop from the operand stack. If the array’s
components are of type byte, the int value truncates to a byte and stores as the
array component at index. If the array’s components are of type boolean, the int
value truncates to its low order bit and then zero-extends to the storage size for
components of boolean arrays used by the JVM implementation. The result stores
as the array component at index.

Runtime
Exceptions:

This instruction throws a NullPointerException if arrayref is null.

This instruction throws an ArrayIndexOutOfBoundsException if index is not
within the bounds of the arrayref-referenced array.

Notes: Sun’s JVM implementation implements boolean arrays as arrays of 8-bit values.

http://www.go2pdf.com

Mnemonic: bipush

Operation: Push byte.

Opcode: 16 (0x10)

Operands: byte

Operand Stack: Before: … >>>
After: …, value

Description: Sign-extend the immediate byte to an int value. Push that value to the operand
stack.

http://www.go2pdf.com

Mnemonic: caload

Operation: Load char from array.

Opcode: 52 (0x34)

Operands: None

Operand Stack: Before: …, arrayref, index >>>
After: …, value

Description: arrayref must be of reference type and must refer to an array whose components
are of char type. Furthermore, index must be of int type. Both arrayref and index
pop from the operand stack. The array component at index retrieves and zero-
extends to an int value, which pushes to the operand stack.

Runtime
Exceptions:

This instruction throws a NullPointerException if arrayref is null.

This instruction throws an ArrayIndexOutOfBoundsException if index is not
within the bounds of the arrayref-referenced array.

http://www.go2pdf.com

Mnemonic: castore

Operation: Store into char array.

Opcode: 85 (0x55)

Operands: None

Operand Stack: Before: …, arrayref, index, value >>>
After: …

Description: arrayref must be of reference type and must refer to an array whose components
are of char type. Furthermore, index and value must both be of int type. arrayref,
index, and value pop from the operand stack. The int value truncates to a char,
which stores as the array component at index.

Runtime
Exceptions:

This instruction throws a NullPointerException if arrayref is null.

This instruction throws an ArrayIndexOutOfBoundsException if index is not
within the bounds of the arrayref-referenced array.

http://www.go2pdf.com

Mnemonic: checkcast

Operation: Check whether object is of given type.

Opcode: 192 (0xC0)

Operands: indexbyte1, indexbyte2

Operand Stack: Before: …, objectref >>>
After: …, objectref

Description: objectref must be of reference type. The unsigned indexbyte1 and indexbyte2
construct an index into the current class’s runtime constant pool, where the value
of the index is (indexbyte1<<8)|indexbyte2. The runtime constant pool item at the
index must be a symbolic reference to a class, array, or interface type. The named
class, array, or interface type then resolves.

If objectref is null or can be cast to the resolved class, array, or interface type, the
operand stack is unchanged. Otherwise, this instruction throws a
ClassCastException.

The following rules determine whether a non-null objectref can be cast to the
resolved type: If S is the class of the object referred to be objectref and T is the
resolved class, array, or interface type, this instruction determines whether
objectref can be cast to type T as follows:

1) If S is an ordinary (nonarray) class, then:

1.1) If T is a class type, then S must be the same class as T, or a subclass of T.

1.2) If T is an interface type, then S must implement interface T.

2) If S is an interface type, then:

2.1) If T is a class type, then T must be Object.

2.2) If T is an interface type, then T must be the same interface as S or a
superinterface of S.

3) If S is a class representing the array type SC[] (an array of components of type
SC), then:

3.1) If T is a class type, then T must be Object.

3.2) If T is an array type TC[] (an array of components of type TC), then one of the
following must be true:

3.2.1) TC and SC are the same primitive type.

3.2.2) TC and SC are reference types, and type SC can be cast to TC by recursive

http://www.go2pdf.com

application of these rules.

3.3) If T is an interface type, T must be one of the interfaces implemented by
arrays.

Linking
Exceptions:

During resolution of the symbolic reference to the class, array, or interface type,
any of the exceptions documented in section 5.4.3.1 of the JVM specification can
be thrown.

Runtime
Exceptions:

This instruction throws a ClassCastException if objectref cannot be cast to the
resolved class, array, or interface type.

Notes: This instruction is very similar to instanceof. However, checkcast differs in its
treatment of null, its behavior when its test fails (checkcast throws an exception,
whereas instanceof pushes a result code), and its effect on the operand stack.

http://www.go2pdf.com

Mnemonic: d2f

Operation: Convert double to float.

Opcode: 144 (0x90)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: The value on the top of the operand stack must be of double type. It pops from
that stack and undergoes value set conversion, resulting in value’. Then value’
converts to a float result using IEEE 754 round to nearest mode. The result
pushes to the operand stack.

Where a d2f instruction is FP-strict, the result of the conversion always rounds to
the nearest representable value in the float value set.

Where a d2f instruction is not FP-strict, the result of the conversion may be taken
from the float-extended-exponent value set; it is not necessarily rounded to the
nearest representable value in the float value set.

A finite value’ too small to represent as a float converts to a zero of the same sign;
a finite value’ too large to represent as a float converts to an infinity of the same
sign. A double NaN converts to a float NaN.

Notes: This instruction performs a narrowing primitive conversion. It may lose
information about the overall magnitude of value’ and may also lose precision.

http://www.go2pdf.com

Mnemonic: d2i

Operation: Convert double to int.

Opcode: 142 (0x8E)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: The value on the top of the operand stack must be of double type. It pops from
that stack and undergoes value set conversion, resulting in value’. Then value’
converts to an int result. The result pushes to the operand stack:

1) If the value’ is NaN, the result of the conversion is an int 0.

2) Otherwise, if the value’ is not an infinity, it rounds to an integer value v,
rounding towards zero using IEEE 754 round towards zero mode. If this integer
value v can represent as an int, the result is the int value v.

3) Otherwise, either the value’ must be too small (a negative value of large
magnitude or negative infinity), and the result is the smallest representable value
of type int, or the value’ must be too large (a positive value of large magnitude or
positive infinity), and the result is the largest representable value of type int.

Notes: This instruction performs a narrowing primitive conversion. It may lose
information about the overall magnitude of value’ and may also lose precision.

http://www.go2pdf.com

Mnemonic: d2l

Operation: Convert double to long.

Opcode: 143 (0x8F)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: The value on the top of the operand stack must be of double type. It pops from
that stack and undergoes value set conversion, resulting in value’. Then value’
converts to a long result. The result pushes to the operand stack:

1) If the value’ is NaN, the result of the conversion is a long 0.

2) Otherwise, if the value’ is not an infinity, it rounds to an integer value v,
rounding towards zero using IEEE 754 round towards zero mode. If this integer
value v can represent as a long, the result is the long value v.

3) Otherwise, either the value’ must be too small (a negative value of large
magnitude or negative infinity), and the result is the smallest representable value
of type long, or the value’ must be too large (a positive value of large magnitude
or positive infinity), and the result is the largest representable value of type long.

Notes: This instruction performs a narrowing primitive conversion. It may lose
information about the overall magnitude of value’ and may also lose precision.

http://www.go2pdf.com

Mnemonic: dadd

Operation: Add double.

Opcode: 99 (0x63)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: Both value1 and value2 must be of double type. Those values pop from the
operand stack and undergo value set conversion, resulting in value1’ and value2’.
The double result is value1’+value2’, which pushes to the operand stack.

The result of this instruction is governed by the rules of IEEE arithmetic:

1) If either value1’ or value2’ is NaN, the result is NaN.

2) The sum of two infinities of opposite sign is NaN.

3) The sum of two infinities of the same sign is the infinity of that sign.

4) The sum of an infinity and any finite value is equal to the infinity.

5) The sum of two zeroes of opposite sign is positive zero.

6) The sum of two zeroes of the same sign is the zero of that sign.

7) The sum of a zero and a nonzero finite value is equal to the nonzero value.

8) The sum of two nonzero finite values of the same magnitude and opposite sign
is positive zero.

9) In the remaining cases, where neither value1’ nor value2’ is an infinity, zero, or
NaN and the values have the same sign or have different magnitudes, the sum
computes and rounds to the nearest representable value using IEEE 754 round to
nearest mode. If the magnitude is too large to represent as a double, the operation
is said to overflow; the result is an infinity of appropriate sign. If the magnitude is
too small to represent as a double, the operation is said to underflow; the result is
a zero of appropriate sign.

The JVM requires support of gradual underflow, as defined by IEEE 754. Despite
the fact that overflow, underflow, or loss of precision may occur, execution of this
instruction never throws a runtime exception.

http://www.go2pdf.com

Mnemonic: daload

Operation: Load double from array.

Opcode: 49 (0x31)

Operands: None

Operand Stack: Before: …, arrayref, index >>>
After: …, value

Description: arrayref must be of reference type and must refer to an array whose components
are of double type. Furthermore, index must be of int type. Both arrayref and
index pop from the operand stack. The double value in the array component at
index retrieves and pushes to the operand stack.

Runtime
Exceptions:

This instruction throws a NullPointerException if arrayref is null.

This instruction throws an ArrayIndexOutOfBoundsException if index is not
within the bounds of the arrayref-referenced array.

http://www.go2pdf.com

Mnemonic: dastore

Operation: Store into double array.

Opcode: 82 (0x52)

Operands: None

Operand Stack: Before: …, arrayref, index, value >>>
After: …

Description: arrayref must be of reference type and must refer to an array whose components
are of double type. Furthermore, index must be of int type and value must be of
double type. arrayref, index, and value pop from the operand stack. The double
value undergoes value set conversion, resulting in value’, which stores as the array
component at index.

Runtime
Exceptions:

This instruction throws a NullPointerException if arrayref is null.

This instruction throws an ArrayIndexOutOfBoundsException if index is not
within the bounds of the arrayref-referenced array.

http://www.go2pdf.com

Mnemonic: dcmpg

Operation: Compare doubles: which is greater.

Opcode: 152 (0x98)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of double type. Those values pop from the operand
stack and undergo value set conversion, resulting in value1’ and value2’. A
floating-point comparison is then performed:

1) If value1’ is greater than value2’, int value 1 pushes to the operand stack.

2) If value1’ is equal to value2’, int value 0 pushes to the operand stack.

3) If value1’ is less than value2’, int value -1 pushes to the operand stack.

4) If at least one of value1’ or value2’ is NaN, int value 1 pushes to the operand
stack.

IEEE 754 rules for floating-point comparison are observed. All values other than
NaN are ordered, with negative infinity being less than all finite values, and
positive infinity being greater than all finite values. Positive zero and negative
zero are considered to be equal.

Notes: dcmpg and dcmpl differ only in their treatment of a comparison involving NaN.

http://www.go2pdf.com

Mnemonic: dcmpl

Operation: Compare doubles: which is lesser.

Opcode: 151 (0x97)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of double type. Those values pop from the operand
stack and undergo value set conversion, resulting in value1’ and value2’. A
floating-point comparison is then performed:

1) If value1’ is greater than value2’, int value 1 pushes to the operand stack.

2) If value1’ is equal to value2’, int value 0 pushes to the operand stack.

3) If value1’ is less than value2’, int value -1 pushes to the operand stack.

4) If at least one of value1’ or value2’ is NaN, int value -1 pushes to the operand
stack.

IEEE 754 rules for floating-point comparison are observed. All values other than
NaN are ordered, with negative infinity being less than all finite values, and
positive infinity being greater than all finite values. Positive zero and negative
zero are considered to be equal.

Notes: dcmpg and dcmpl differ only in their treatment of a comparison involving NaN.

http://www.go2pdf.com

Mnemonic: dconst_0

Operation: Push double 0.0.

Opcode: 14 (0x0E)

Operands: None

Operand Stack: Before: … >>>
After: …, 0.0

Description: Push the double constant 0.0 to the operand stack.

http://www.go2pdf.com

Mnemonic: dconst_1

Operation: Push double 1.0.

Opcode: 15 (0x0F)

Operands: None

Operand Stack: Before: … >>>
After: …, 1.0

Description: Push the double constant 1.0 to the operand stack.

http://www.go2pdf.com

Mnemonic: ddiv

Operation: Divide double.

Opcode: 111 (0x6F)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of double type. Those values pop from the operand
stack and undergo value set conversion, resulting in value1’ and value2’. The
double result from value1’/value2’ pushes to the operand stack.

The following IEEE arithmetic rules govern this instruction:

1) If either value1’ or value2’ is NaN, the result is NaN.

2) If neither value1’ nor value2’ is NaN, the result’s sign is positive (if both values
have the same sign) or negative (if the values have different signs).

3) Division of positive/negative infinity by positive/negative infinity yields NaN.

4) Division of positive/negative infinity by a finite value results in a signed
infinity (where the sign is based on Rule 2).

5) Division of a finite value by positive/negative infinity results in a signed zero
(where the sign is based on Rule 2).

6) Division of positive/negative zero by positive/negative zero yields NaN.
Division of zero by any other finite value results in a signed zero (where the sign
is based on Rule 2).

7) Division of a nonzero finite value by a zero results in a signed infinity (where
the sign is based on Rule 2).

8) In remaining cases, where neither value1’ nor value2’ is an infinity, a zero, or
NaN, the quotient computes and rounds to the nearest double using IEEE 754
round to nearest mode. If the magnitude is too large to represent as a double, the
operation is said to overflow and the result is an infinity of the appropriate sign. If
the magnitude is too small to represent as a double, the operation is said to
underflow and the result is a zero of the appropriate sign.

The JVM requires support of gradual underflow as defined by IEEE 754. This
instruction never throws an exception, even though overflow, underflow, division
by zero, or loss of precision may occur.

http://www.go2pdf.com

Mnemonic: dload

Operation: Load double from local variable.

Opcode: 24 (0x18)

Operands: index

Operand Stack: Before: … >>>
After: …, value

Description: index is an unsigned byte. Both index and index+1 must be indices into the
current stack frame’s local variable array. Furthermore, the local variable at index
must contain a double. The value of the local variable at index pushes to the
operand stack.

Notes: This instruction’s opcode can be used with the wide instruction’s opcode to access
a local variable using a two-byte unsigned index.

http://www.go2pdf.com

Mnemonic: dload_0

Operation: Load double from local variable 0.

Opcode: 38 (0x26)

Operands: None

Operand Stack: Before: … >>>
After: …, value

Description: 0 and 1 must be indices into the current stack frame’s local variable array.
Furthermore, the local variable at 0 must contain a double. The value of the local
variable at 0 pushes to the operand stack.

Notes: This instruction is the same as dload (with a 0 index operand), except that the 0 in
dload_0 is implicit.

http://www.go2pdf.com

Mnemonic: dload_1

Operation: Load double from local variable 1.

Opcode: 39 (0x27)

Operands: None

Operand Stack: Before: … >>>
After: …, value

Description: 1 and 2 must be indices into the current stack frame’s local variable array.
Furthermore, the local variable at 1 must contain a double. The value of the local
variable at 1 pushes to the operand stack.

Notes: This instruction is the same as dload (with a 1 index operand), except that the 1 in
dload_1 is implicit.

http://www.go2pdf.com

Mnemonic: dload_2

Operation: Load double from local variable 2.

Opcode: 40 (0x28)

Operands: None

Operand Stack: Before: … >>>
After: …, value

Description: 2 and 3 must be indices into the current stack frame’s local variable array.
Furthermore, the local variable at 2 must contain a double. The value of the local
variable at 2 pushes to the operand stack.

Notes: This instruction is the same as dload (with a 2 index operand), except that the 2 in
dload_2 is implicit.

http://www.go2pdf.com

Mnemonic: dload_3

Operation: Load double from local variable 3.

Opcode: 41 (0x29)

Operands: None

Operand Stack: Before: … >>>
After: …, value

Description: 3 and 4 must be indices into the current stack frame’s local variable array.
Furthermore, the local variable at 3 must contain a double. The value of the local
variable at 3 pushes to the operand stack.

Notes: This instruction is the same as dload (with a 3 index operand), except that the 3 in
dload_3 is implicit.

http://www.go2pdf.com

Mnemonic: dmul

Operation: Multiply double.

Opcode: 107 (0x6B)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of double type. Those values pop from the operand
stack and undergo value set conversion, resulting in value1’ and value2’. The
double result from value1’*value2’ pushes to the operand stack.

The following IEEE arithmetic rules govern this instruction:

1) If either value1’ or value2’ is NaN, the result is NaN.

2) If neither value1’ nor value2’ is NaN, the result’s sign is positive (if both values
have the same sign) or negative (if the values have different signs).

3) Multiplication of positive/negative infinity by positive/negative zero yields
NaN.

4) Multiplication of positive/negative infinity by a finite value results in a signed
infinity (where the sign is based on Rule 2).

5) In remaining cases, where neither an infinity nor NaN is involved, the product
computes and rounds to the nearest representable value using IEEE 754 round to
nearest mode. If the magnitude is too large to represent as a double, the operation
is said to overflow and the result is an infinity of the appropriate sign. If the
magnitude is too small to represent as a double, the operation is said to underflow
and the result is a zero of the appropriate sign.

The JVM requires support of gradual underflow as defined by IEEE 754. This
instruction never throws an exception, even though overflow, underflow, or loss of
precision may occur.

http://www.go2pdf.com

Mnemonic: dneg

Operation: Negate double.

Opcode: 119 (0x77)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: value must be of double type. It pops from the operand stack and undergoes value
set conversion, resulting in value’. The double result is the arithmetic negation of
value’, which pushes to the operand stack.

Negation is not the same as subtraction from zero, for double values. If x is +0.0
then 0.0-x equals +0.0, but –x equals –0.0. (Unary minus inverts the sign of a
double.)

There are three special cases:

1) If value is NaN, the result is NaN. (NaN has no sign.)

2) If value is positive/negative infinity, the result is the infinity of the opposite
sign.

3) If value is positive/negative zero, the result is the zero of the opposite sign.

http://www.go2pdf.com

Mnemonic: drem

Operation: Remainder double.

Opcode: 115 (0x73)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of double type. Those values pop from the operand
stack and undergo value set conversion, resulting in value1’ and value2’. The
double result calculates and pushes to the operand stack.

This instruction behaves in a manner similar to that of the irem and lrem JVM
instructions.

The following rules govern this instruction:

1) If either value1’ or value2’ is NaN, the result is NaN.

2) If neither value1’ nor value2’ is NaN, the result’s sign equals the dividend’s
sign.

3) If the dividend is positive/negative infinity or the divisor is positive/negative
zero (or both), the result is NaN.

4) If the dividend is finite and the divisor is positive/negative infinity, the result
equals the dividend.

5) If the dividend is positive/negative zero and the divisor is finite, the result
equals the dividend.

6) In remaining cases, where neither value1 nor value2 is a positive/negative
infinity, a positive/negative zero, nor NaN, the floating-point remainder result
from a dividend value1’ and a divisor value2’ is defined by the mathematical
relation result=value1’–(value2’*q), where q is an integer that is negative only if
value1’/value2’ is negative, and positive only if value1’/value2’ is positive, and
whose magnitude is as large as possible without exceeding the magnitude of the
true mathematical quotient of value1’ and value2’.

Even though division by zero may occur, this instruction never throws a runtime
exception. Overflow, underflow, or precision loss cannot occur.

Notes: This instruction’s result is not the same as that of the IEEE 754 remainder
operation. Use the Math.IEEEremainder library routine to compute that
operation.

http://www.go2pdf.com

Mnemonic: dreturn

Operation: Return double from method.

Opcode: 175 (0xAF)

Operands: None

Operand Stack: Before: …, value >>>
After: [empty]

Description: Both the current method’s return type and value’s type must be double. If the
current method is synchronized, the monitor acquired or reentered on that
method’s invocation is released or exited (respectively) as if by executing the
monitorexit instruction. If no exception is thrown, value pops from the current
stack frame’s operand stack and undergoes value set conversion, resulting in
value’. value’ pushes to the operand stack of the invoker’s stack frame. Any other
values on the current method’s operand stack discard.

The interpreter returns control to the current method’s invoker, reinstating the
invoker’s stack frame as the current stack frame.

Runtime
Exceptions:

This instruction throws an IllegalMonitorStateException if the current method is
a synchronized method and the current thread is not the owner of the monitor
acquired or reentered on invocation of the method.

This instruction also throws an IllegalMonitorStateException if the JVM
implementation enforces the rules on structured lock usage, and the number of
lock operations performed by a thread on a lock does not match the number of
unlock operations by that thread on that lock (whether the method invocation
completes normally or abruptly).

http://www.go2pdf.com

Mnemonic: dstore

Operation: Store double into local variable.

Opcode: 57 (0x39)

Operands: index

Operand Stack: Before: …, value >>>
After: …

Description: index is an unsigned byte. Both index and index+1 must be indices into the
current stack frame’s local variable array. Furthermore, the value on top of the
operand stack must be of double type. It pops from the operand stack and
undergoes value set conversion, resulting in value’. value’ stores in the local
variables at index and index+1.

Notes: This instruction’s opcode can be used with the wide instruction’s opcode to access
a local variable using a two-byte unsigned index.

http://www.go2pdf.com

Mnemonic: dstore_0

Operation: Store double into local variable 0.

Opcode: 71 (0x47)

Operands: None

Operand Stack: Before: …, value >>>
After: …

Description: 0 and 1 must be indices into the current stack frame’s local variable array.
Furthermore, the value on top of the operand stack must be of double type. It pops
from the operand stack and undergoes value set conversion, resulting in value’.
value’ stores in the local variables at 0 and 1.

Notes: This instruction is the same as dstore (with a 0 index operand), except that the 0 in
dstore_0 is implicit.

http://www.go2pdf.com

Mnemonic: dstore_1

Operation: Store double into local variable 1.

Opcode: 72 (0x48)

Operands: None

Operand Stack: Before: …, value >>>
After: …

Description: 1 and 2 must be indices into the current stack frame’s local variable array.
Furthermore, the value on top of the operand stack must be of double type. It pops
from the operand stack and undergoes value set conversion, resulting in value’.
value’ stores in the local variables at 1 and 2.

Notes: This instruction is the same as dstore (with a 1 index operand), except that the 1 in
dstore_1 is implicit.

http://www.go2pdf.com

Mnemonic: dstore_2

Operation: Store double into local variable 2.

Opcode: 73 (0x49)

Operands: None

Operand Stack: Before: …, value >>>
After: …

Description: 2 and 3 must be indices into the current stack frame’s local variable array.
Furthermore, the value on top of the operand stack must be of double type. It pops
from the operand stack and undergoes value set conversion, resulting in value’.
value’ stores in the local variables at 2 and 3.

Notes: This instruction is the same as dstore (with a 2 index operand), except that the 2 in
dstore_2 is implicit.

http://www.go2pdf.com

Mnemonic: dstore_3

Operation: Store double into local variable 3.

Opcode: 74 (0x4A)

Operands: None

Operand Stack: Before: …, value >>>
After: …

Description: 3 and 4 must be indices into the current stack frame’s local variable array.
Furthermore, the value on top of the operand stack must be of double type. It pops
from the operand stack and undergoes value set conversion, resulting in value’.
value’ stores in the local variables at 3 and 4.

Notes: This instruction is the same as dstore (with a 3 index operand), except that the 3 in
dstore_3 is implicit.

http://www.go2pdf.com

Mnemonic: dsub

Operation: Subtract double.

Opcode: 103 (0x67)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: Both value1 and value2 must be of double type. Those values pop from the
operand stack and undergo value set conversion, resulting in value1’ and value2’.
The double result is value1’-value2’, which pushes to the operand stack.

For double subtraction, it is always the case that a-b results in the same value as
a+(-b). However, subtraction from zero is not the same as negation: if x is +0.0,
0.0-x equals +0.0, but -x equals -0.0.

The JVM requires support of gradual underflow, as defined by IEEE 754. Despite
the fact that overflow, underflow, or loss of precision may occur, execution of this
instruction never throws a runtime exception.

http://www.go2pdf.com

Mnemonic: dup

Operation: Duplicate the top operand stack value.

Opcode: 89 (0x59)

Operands: None

Operand Stack: Before: …, value >>>
After: …, value, value

Description: Duplicate the top value on the operand stack and push the duplicated value to that
stack.

This instruction must not be used if value is of type double or long.

http://www.go2pdf.com

Mnemonic: dup_x1

Operation: Duplicate the top operand stack value and insert two values down.

Opcode: 90 (0x5A)

Operands: None

Operand Stack: Before: …, value2, value1 >>>
After: …, value1, value2, value1

Description: Duplicate the top value on the operand stack and insert the duplicated value two
values down in that stack.

This instruction must not be used if value1 or value2 is of type double or long.

http://www.go2pdf.com

Mnemonic: dup_x2

Operation: Duplicate the top operand stack value and insert two or three values down.

Opcode: 91 (0x5B)

Operands: None

Operand Stack: Before: …, value3, value2, value1 >>>
After: …, value1, value3, value2, value1

value1, value2, and value3 must not be of type double or long.

Before: …, value2, value1 >>>
After: …, value1, value2, value1

value1 must not be of type double or long. value2 must be of type double or long.

Description: Duplicate the top value on the operand stack and insert the duplicated value two or
three values down in that stack.

http://www.go2pdf.com

Mnemonic: dup2

Operation: Duplicate the top one or two operand stack values.

Opcode: 92 (0x5C)

Operands: None

Operand Stack: Before: …, value2, value1 >>>
After: …, value2, value1, value2, value1

value1 and value2 must not be of type double or long.

Before: …, value >>>
After: …, value, value

value must be of type double or long.

Description: Duplicate the top one or two values on the operand stack and push the duplicated
value(s) back to that stack in the original order.

http://www.go2pdf.com

Mnemonic: dup2_x1

Operation: Duplicate the top one or two operand stack values and insert two or three values
down.

Opcode: 93 (0x5D)

Operands: None

Operand Stack: Before: …, value3, value2, value1 >>>
After: …, value2, value1, value3, value2, value1

value1, value2, and value3 must not be of type double or long.

Before: …, value2, value1 >>>
After: …, value1, value2, value1

value1 must be of type double or long. value2 must not be of type double or long.

Description: Duplicate the top one or two values on the operand stack and insert the duplicated
values, in the original order, one value beneath the original value(s) in that stack.

http://www.go2pdf.com

Mnemonic: dup2_x2

Operation: Duplicate the top one or two operand stack values and insert two, three, or four
values down.

Opcode: 94 (0x5E)

Operands: None

Operand Stack: Before: …, value4, value3, value2, value1 >>>
After: …, value2, value1, value4, value3, value2, value1

value1, value2, value3, and value4 must not be of type double or long.

Before: …, value3, value2, value1 >>>
After: …, value1, value3, value2, value1

value1 must be of type double or long. value2 and value3 must not be of type
double or long.

Before: …, value3, value2, value1 >>>
After: …, value2, value1, value3, value2, value1

value1 and value2 must not be of type double or long. value3 must be of type
double or long.

Before: …, value2, value1 >>>
After: …, value1, value2, value1

value1 and value2 must be of type double or long.

Description: Duplicate the top one or two values on the operand stack and insert the duplicated
values, in the original order, into that stack.

http://www.go2pdf.com

Mnemonic: f2d

Operation: Convert float to double.

Opcode: 141 (0x8D)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: The value on the top of the operand stack must be of float type. It pops from that
stack and undergoes value set conversion, resulting in value’. Then value’
converts to a double result, which pushes to the operand stack.

Notes: Where an f2d instruction is FP-strict, it performs a widening primitive conversion.
The conversion is exact because all values of the float value set are exactly
representable by values of the double value set.

Where an f2d instruction is not FP-strict, the result of the conversion may be taken
from the double-extended-exponent value set; it is not necessarily rounded to the
nearest representable value in the double value set. However, if value is taken
from the float-extended-exponent value set and result is constrained to the double
value set, rounding of value may be required.

http://www.go2pdf.com

Mnemonic: f2i

Operation: Convert float to int.

Opcode: 139 (0x8B)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: The value on the top of the operand stack must be of float type. It pops from that
stack and undergoes value set conversion, resulting in value’. Then value’
converts to an int result. The result pushes to the operand stack:

1) If the value’ is NaN, the result of the conversion is an int 0.

2) Otherwise, if the value’ is not an infinity, it rounds to an integer value v,
rounding towards zero using IEEE 754 round towards zero mode. If this integer
value v can represent as an int, the result is the int value v.

3) Otherwise, either the value’ must be too small (a negative value of large
magnitude or negative infinity), and the result is the smallest representable value
of type int, or the value’ must be too large (a positive value of large magnitude or
positive infinity), and the result is the largest representable value of type int.

Notes: This instruction performs a narrowing primitive conversion. It may lose
information about the overall magnitude of value’ and may also lose precision.

http://www.go2pdf.com

Mnemonic: f2l

Operation: Convert float to long.

Opcode: 140 (0x8C)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: The value on the top of the operand stack must be of float type. It pops from that
stack and undergoes value set conversion, resulting in value’. Then value’
converts to a long result. The result pushes to the operand stack:

1) If the value’ is NaN, the result of the conversion is a long 0.

2) Otherwise, if the value’ is not an infinity, it rounds to an integer value v,
rounding towards zero using IEEE 754 round towards zero mode. If this integer
value v can represent as a long, the result is the long value v.

3) Otherwise, either the value’ must be too small (a negative value of large
magnitude or negative infinity), and the result is the smallest representable value
of type long, or the value’ must be too large (a positive value of large magnitude
or positive infinity), and the result is the largest representable value of type long.

Notes: This instruction performs a narrowing primitive conversion. It may lose
information about the overall magnitude of value’ and may also lose precision.

http://www.go2pdf.com

Mnemonic: fadd

Operation: Add float.

Opcode: 98 (0x62)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: Both value1 and value2 must be of float type. Those values pop from the operand
stack and undergo value set conversion, resulting in value1’ and value2’. The
float result is value1’+value2’, which pushes to the operand stack.

The result of this instruction is governed by the rules of IEEE arithmetic:

1) If either value1’ or value2’ is NaN, the result is NaN.

2) The sum of two infinities of opposite sign is NaN.

3) The sum of two infinities of the same sign is the infinity of that sign.

4) The sum of an infinity and any finite value is equal to the infinity.

5) The sum of two zeroes of opposite sign is positive zero.

6) The sum of two zeroes of the same sign is the zero of that sign.

7) The sum of a zero and a nonzero finite value is equal to the nonzero value.

8) The sum of two nonzero finite values of the same magnitude and opposite sign
is positive zero.

9) In the remaining cases, where neither value1 nor value2 is an infinity, a zero, or
NaN and the values have the same sign or have different magnitudes, the sum
computes and rounds to the nearest representable value using IEEE 754 round to
nearest mode. If the magnitude is too large to represent as a float, the operation is
said to overflow; the result is an infinity of appropriate sign. If the magnitude is
too small to represent as a float, the operation is said to underflow; the result is a
zero of appropriate sign.

The JVM requires support of gradual underflow, as defined by IEEE 754. Despite
the fact that overflow, underflow, or loss of precision may occur, execution of this
instruction never throws a runtime exception.

http://www.go2pdf.com

Mnemonic: faload

Operation: Load float from array.

Opcode: 48 (0x30)

Operands: None

Operand Stack: Before: …, arrayref, index >>>
After: …, value

Description: arrayref must be of reference type and must refer to an array whose components
are of float type. Furthermore, index must be of int type. Both arrayref and index
pop from the operand stack. The float value in the array component at index
retrieves and pushes to the operand stack.

Runtime
Exceptions:

This instruction throws a NullPointerException if arrayref is null.

This instruction throws an ArrayIndexOutOfBoundsException if index is not
within the bounds of the arrayref-referenced array.

http://www.go2pdf.com

Mnemonic: fastore

Operation: Store into float array.

Opcode: 81 (0x51)

Operands: None

Operand Stack: Before: …, arrayref, index, value >>>
After: …

Description: arrayref must be of reference type and must refer to an array whose components
are of float type. Furthermore, index must be of int type and value must be of
float type. arrayref, index, and value pop from the operand stack. The float value
undergoes value set conversion, resulting in value’, which stores as the array
component at index.

Runtime
Exceptions:

This instruction throws a NullPointerException if arrayref is null.

This instruction throws an ArrayIndexOutOfBoundsException if index is not
within the bounds of the arrayref-referenced array.

http://www.go2pdf.com

Mnemonic: fcmpg

Operation: Compare floats: which is greater.

Opcode: 150 (0x96)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of float type. Those values pop from the operand stack
and undergo value set conversion, resulting in value1’ and value2’. A floating-
point comparison is then performed:

1) If value1’ is greater than value2’, int value 1 pushes to the operand stack.

2) If value1’ is equal to value2’, int value 0 pushes to the operand stack.

3) If value1’ is less than value2’, int value -1 pushes to the operand stack.

4) If at least one of value1’ or value2’ is NaN, int value 1 pushes to the operand
stack.

IEEE 754 rules for floating-point comparison are observed. All values other than
NaN are ordered, with negative infinity being less than all finite values, and
positive infinity being greater than all finite values. Positive zero and negative
zero are considered to be equal.

Notes: fcmpg and fcmpl differ only in their treatment of a comparison involving NaN.

http://www.go2pdf.com

Mnemonic: fcmpl

Operation: Compare floats: which is lesser.

Opcode: 149 (0x95)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of float type. Those values pop from the operand stack
and undergo value set conversion, resulting in value1’ and value2’. A floating-
point comparison is then performed:

1) If value1’ is greater than value2’, int value 1 pushes to the operand stack.

2) If value1’ is equal to value2’, int value 0 pushes to the operand stack.

3) If value1’ is less than value2’, int value -1 pushes to the operand stack.

4) If at least one of value1’ or value2’ is NaN, int value -1 pushes to the operand
stack.

IEEE 754 rules for floating-point comparison are observed. All values other than
NaN are ordered, with negative infinity being less than all finite values, and
positive infinity being greater than all finite values. Positive zero and negative
zero are considered to be equal.

Notes: fcmpg and fcmpl differ only in their treatment of a comparison involving NaN.

http://www.go2pdf.com

Mnemonic: fconst_0

Operation: Push float 0.0f.

Opcode: 11 (0x0B)

Operands: None

Operand Stack: Before: … >>>
After: …, 0.0

Description: Push the float constant 0.0 to the operand stack.

http://www.go2pdf.com

Mnemonic: fconst_1

Operation: Push float 1.0f.

Opcode: 12 (0x0C)

Operands: None

Operand Stack: Before: … >>>
After: …, 1.0

Description: Push the float constant 1.0 to the operand stack.

http://www.go2pdf.com

Mnemonic: fconst_2

Operation: Push float 2.0f.

Opcode: 13 (0x0D)

Operands: None

Operand Stack: Before: … >>>
After: …, 2.0

Description: Push the float constant 2.0 to the operand stack.

http://www.go2pdf.com

Mnemonic: fdiv

Operation: Divide float.

Opcode: 110 (0x6E)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of float type. Those values pop from the operand stack
and undergo value set conversion, resulting in value1’ and value2’. The float
result from value1’/value2’ pushes to the operand stack.

The following IEEE arithmetic rules govern this instruction:

1) If either value1’ or value2’ is NaN, the result is NaN.

2) If neither value1’ nor value2’ is NaN, the result’s sign is positive (if both values
have the same sign) or negative (if the values have different signs).

3) Division of positive/negative infinity by positive/negative infinity yields NaN.

4) Division of positive/negative infinity by a finite value results in a signed
infinity (where the sign is based on Rule 2).

5) Division of a finite value by positive/negative infinity results in a signed zero
(where the sign is based on Rule 2).

6) Division of positive/negative zero by positive/negative zero yields NaN.
Division of zero by any other finite value results in a signed zero (where the sign
is based on Rule 2).

7) Division of a nonzero finite value by positive/negative zero results in a signed
infinity (where the sign is based on Rule 2).

8) In remaining cases, where neither value1 nor value2 is an infinity, a zero, or
NaN, the quotient computes and rounds to the nearest float using IEEE 754 round
to nearest mode. If the magnitude is too large to represent as a float, the operation
is said to overflow and the result is an infinity of the appropriate sign. If the
magnitude is too small to represent as a float, the operation is said to underflow
and the result is a zero of the appropriate sign.

The JVM requires support of gradual underflow as defined by IEEE 754. This
instruction never throws an exception, even though overflow, underflow, division
by zero, or loss of precision may occur.

http://www.go2pdf.com

Mnemonic: fload

Operation: Load float from local variable.

Opcode: 23 (0x17)

Operands: index

Operand Stack: Before: … >>>
After: …, value

Description: index is an unsigned byte that must be an index into the current stack frame’s local
variable array. Furthermore, the local variable at index must contain a float. The
value of the local variable at index pushes to the operand stack.

Notes: This instruction’s opcode can be used with the wide instruction’s opcode to access
a local variable using a two-byte unsigned index.

http://www.go2pdf.com

Mnemonic: fload_0

Operation: Load float from local variable 0.

Opcode: 34 (0x22)

Operands: None

Operand Stack: Before: … >>>
After: …, value

Description: 0 must be an index into the current stack frame’s local variable array.
Furthermore, the local variable at 0 must contain a float. The value of the local
variable at 0 pushes to the operand stack.

Notes: This instruction is the same as fload (with a 0 index operand), except that the 0 in
fload_0 is implicit.

http://www.go2pdf.com

Mnemonic: fload_1

Operation: Load float from local variable 1.

Opcode: 35 (0x23)

Operands: None

Operand Stack: Before: … >>>
After: …, value

Description: 1 must be an index into the current stack frame’s local variable array.
Furthermore, the local variable at 1 must contain a float. The value of the local
variable at 1 pushes to the operand stack.

Notes: This instruction is the same as fload (with a 1 index operand), except that the 1 in
fload_1 is implicit.

http://www.go2pdf.com

Mnemonic: fload_2

Operation: Load float from local variable 2.

Opcode: 36 (0x24)

Operands: None

Operand Stack: Before: … >>>
After: …, value

Description: 2 must be an index into the current stack frame’s local variable array.
Furthermore, the local variable at 2 must contain a float. The value of the local
variable at 2 pushes to the operand stack.

Notes: This instruction is the same as fload (with a 2 index operand), except that the 2 in
fload_2 is implicit.

http://www.go2pdf.com

Mnemonic: fload_3

Operation: Load float from local variable 3.

Opcode: 37 (0x25)

Operands: None

Operand Stack: Before: … >>>
After: …, value

Description: 3 must be an index into the current stack frame’s local variable array.
Furthermore, the local variable at 3 must contain a float. The value of the local
variable at 3 pushes to the operand stack.

Notes: This instruction is the same as fload (with a 3 index operand), except that the 3 in
fload_3 is implicit.

http://www.go2pdf.com

Mnemonic: fmul

Operation: Multiply float.

Opcode: 106 (0x6A)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of float type. Those values pop from the operand stack
and undergo value set conversion, resulting in value1’ and value2’. The float
result from value1’*value2’ pushes to the operand stack.

The following IEEE arithmetic rules govern this instruction:

1) If either value1’ or value2’ is NaN, the result is NaN.

2) If neither value1’ nor value2’ is NaN, the result’s sign is positive (if both values
have the same sign) or negative (if the values have different signs).

3) Multiplication of positive/negative infinity by positive/negative zero yields
NaN.

4) Multiplication of positive/negative infinity by a finite value results in a signed
infinity (where the sign is based on Rule 2).

5) In remaining cases, where neither an infinity nor NaN is involved, the product
computes and rounds to the nearest representable value using IEEE 754 round to
nearest mode. If the magnitude is too large to represent as a float, the operation is
said to overflow and the result is an infinity of the appropriate sign. If the
magnitude is too small to represent as a float, the operation is said to underflow
and the result is a zero of the appropriate sign.

The JVM requires support of gradual underflow as defined by IEEE 754. This
instruction never throws an exception, even though overflow, underflow, or loss of
precision may occur.

http://www.go2pdf.com

Mnemonic: fneg

Operation: Negate float.

Opcode: 118 (0x76)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: value must be of float type. It pops from the operand stack and undergoes value
set conversion, resulting in value1’. The float result is the arithmetic negation of
value1, which pushes to the operand stack.

Negation is not the same as subtraction from zero, for float values. If x is +0.0
then 0.0-x equals +0.0, but –x equals –0.0. Unary minus inverts the sign of a float.

There are three special cases:

1) If value is NaN, the result is NaN. (NaN has no sign.)

2) If value is positive/negative infinity, the result is the infinity of the opposite
sign.

3) If value is positive/negative zero, the result is the zero of opposite sign.

http://www.go2pdf.com

Mnemonic: frem

Operation: Remainder float.

Opcode: 114 (0x72)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of float type. Those values pop from the operand stack
and undergo value set conversion, resulting in value1’ and value2’. The float
result calculates and pushes to the operand stack.

This instruction behaves in a manner similar to that of the irem and lrem JVM
instructions.

The following rules govern this instruction:

1) If either value1’ or value2’ is NaN, the result is NaN.

2) If neither value1’ nor value2’ is NaN, the result’s sign equals the dividend’s
sign.

3) If the dividend is positive/negative infinity or the divisor is positive/negative
zero (or both), the result is NaN.

4) If the dividend is finite and the divisor is positive/negative infinity, the result
equals the dividend.

5) If the dividend is positive/negative zero and the divisor is finite, the result
equals the dividend.

6) In remaining cases, where neither value1 nor value2 is a positive/negative
infinity, a positive/negative zero, nor NaN, the floating-point remainder result
from a dividend value1’ and a divisor value2’ is defined by the mathematical
relation result=value1’–(value2’*q), where q is an integer that is negative only if
value1’/value2’ is negative, and positive only if value1’/value2’ is positive, and
whose magnitude is as large as possible without exceeding the magnitude of the
true mathematical quotient of value1’ and value2’.

Even though division by zero may occur, this instruction never throws a runtime
exception. Overflow, underflow, or precision loss cannot occur.

Notes: This instruction’s result is not the same as that of the IEEE 754 remainder
operation. Use the Math.IEEEremainder library routine to compute that
operation.

http://www.go2pdf.com

Mnemonic: freturn

Operation: Return float from method.

Opcode: 174 (0xAE)

Operands: None

Operand Stack: Before: …, value >>>
After: [empty]

Description: Both the current method’s return type and value’s type must be float. If the
current method is synchronized, the monitor acquired or reentered on that
method’s invocation is released or exited (respectively) as if by executing the
monitorexit instruction. If no exception is thrown, value pops from the current
stack frame’s operand stack and undergoes value set conversion, resulting in
value’. value’ pushes to the operand stack of the invoker’s stack frame. Any other
values on the current method’s operand stack discard.

The interpreter returns control to the current method’s invoker, reinstating the
invoker’s stack frame as the current stack frame.

Runtime
Exceptions:

This instruction throws an IllegalMonitorStateException if the current method is
a synchronized method and the current thread is not the owner of the monitor
acquired or reentered on invocation of the method.

This instruction also throws an IllegalMonitorStateException if the JVM
implementation enforces the rules on structured lock usage, and the number of
lock operations performed by a thread on a lock does not match the number of
unlock operations by that thread on that lock (whether the method invocation
completes normally or abruptly).

http://www.go2pdf.com

Mnemonic: fstore

Operation: Store float into local variable.

Opcode: 56 (0x38)

Operands: index

Operand Stack: Before: …, value >>>
After: …

Description: index is an unsigned byte that must be an index into the current stack frame’s local
variable array. Furthermore, the value on top of the operand stack must be of float
type. It pops from the operand stack and undergoes value set conversion, resulting
in value’. value’ stores in the local variable at index.

Notes: This instruction’s opcode can be used with the wide instruction’s opcode to access
a local variable using a two-byte unsigned index.

http://www.go2pdf.com

Mnemonic: fstore_0

Operation: Store float into local variable 0.

Opcode: 67 (0x43)

Operands: None

Operand Stack: Before: …, value >>>
After: …

Description: 0 must be an index into the current stack frame’s local variable array.
Furthermore, the value on top of the operand stack must be of float type. It pops
from the operand stack and undergoes value set conversion, resulting in value’.
value’ stores in the local variable at 0.

Notes: This instruction is the same as fstore (with a 0 index operand), except that the 0 in
fstore_0 is implicit.

http://www.go2pdf.com

Mnemonic: fstore_1

Operation: Store float into local variable 1.

Opcode: 68 (0x44)

Operands: None

Operand Stack: Before: …, value >>>
After: …

Description: 1 must be an index into the current stack frame’s local variable array.
Furthermore, the value on top of the operand stack must be of float type. It pops
from the operand stack and undergoes value set conversion, resulting in value’.
value’ stores in the local variable at 1.

Notes: This instruction is the same as fstore (with a 1 index operand), except that the 1 in
fstore_1 is implicit.

http://www.go2pdf.com

Mnemonic: fstore_2

Operation: Store float into local variable 2.

Opcode: 69 (0x45)

Operands: None

Operand Stack: Before: …, value >>>
After: …

Description: 2 must be an index into the current stack frame’s local variable array.
Furthermore, the value on top of the operand stack must be of float type. It pops
from the operand stack and undergoes value set conversion, resulting in value’.
value’ stores in the local variable at 2.

Notes: This instruction is the same as fstore (with a 2 index operand), except that the 2 in
fstore_2 is implicit.

http://www.go2pdf.com

Mnemonic: fstore_3

Operation: Store float into local variable 3.

Opcode: 70 (0x46)

Operands: None

Operand Stack: Before: …, value >>>
After: …

Description: 3 must be an index into the current stack frame’s local variable array.
Furthermore, the value on top of the operand stack must be of float type. It pops
from the operand stack and undergoes value set conversion, resulting in value’.
value’ stores in the local variable at 3.

Notes: This instruction is the same as fstore (with a 3 index operand), except that the 3 in
fstore_3 is implicit.

http://www.go2pdf.com

Mnemonic: fsub

Operation: Subtract float.

Opcode: 102 (0x66)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: Both value1 and value2 must be of float type. Those values pop from the operand
stack and undergo value set conversion, resulting in value1’ and value2’. The
float result is value1’-value2’, which pushes to the operand stack.

For float subtraction, it is always the case that a-b results in the same value as a
+(-b). However, subtraction from zero is not the same as negation: if x is +0.0,
0.0-x equals +0.0, but -x equals -0.0.

The JVM requires support of gradual underflow, as defined by IEEE 754. Despite
the fact that overflow, underflow, or loss of precision may occur, execution of this
instruction never throws a runtime exception.

http://www.go2pdf.com

Mnemonic: getfield

Operation: Get field from object.

Opcode: 180 (0xB4)

Operands: indexbyte1, indexbyte2

Operand Stack: Before: …, objectref >>>
After: …, value

Description: objectref, which must be of reference type, pops from the operand stack. The
unsigned indexbyte1 and indexbyte2 construct an index into the current class’s
runtime constant pool, where the index value is (indexbyte1<<8)|indexbyte2. The
runtime constant pool item at that index must be a symbolic reference to a field,
which gives the name and descriptor of the field as well as a symbolic reference to
the class in which the field is to be found. The referenced field resolves. The value
of the referenced field in objectref fetches and pushes to the operand stack.

objectref’s class must not be an array. If the field is protected, and is either a
member of the current class or a member of a superclass of the current class,
objectref’s class must be either the current class or a subclass of the current class.

Linking
Exceptions:

During resolution of the symbolic reference to the field, any of the errors
pertaining to field resolution documented in section 5.4.3.2 of the JVM
specification can be thrown.

This instruction throws an IncompatibleClassChangeError if the resolved field
is a static field.

Runtime
Exceptions:

This instruction throws a NullPointerException if objectref is null.

Notes: This instruction cannot be used to access an array’s length field. Use arraylength
instead.

http://www.go2pdf.com

Mnemonic: getstatic

Operation: Get static field from class.

Opcode: 178 (0xB2)

Operands: indexbyte1, indexbyte2

Operand Stack: Before: … >>>
After: …, value

Description: The unsigned indexbyte1 and indexbyte2 construct an index into the current
class’s runtime constant pool, where the index value is
(indexbyte1<<8)|indexbyte2. The runtime constant pool item at that index must be
a symbolic reference to a field, which gives the name and descriptor of the field as
well as a symbolic reference to the class or interface in which the field is to be
found. The referenced field resolves.

On successful resolution of the field, the class or interface that declares the
resolved field initializes (unless already initialized).

The value of the class or interface field fetches and pushes to the operand stack.

Linking
Exceptions:

During resolution of the symbolic reference to the class or interface field, any of
the exceptions pertaining to field resolution documented in section 5.4.3.2 of the
JVM specification can be thrown.

This instruction throws an IncompatibleClassChangeError if the resolved field
is not a class (static) field or an interface field.

Runtime
Exceptions:

If execution of this instruction causes initialization of the referenced class or
interface, the instruction may throw an Error as detailed in section 2.17.5 of the
JVM specification.

http://www.go2pdf.com

Mnemonic: goto

Operation: Branch always.

Opcode: 167 (0xA7)

Operands: branchbyte1, branchbyte2

Operand Stack: No change

Description: Unsigned bytes branchbyte1 and branchbyte2 construct into a 16-bit
branchoffset, via (branchbyte1<<8)|branchbyte2. Execution proceeds at
branchoffset from the address of this instruction’s opcode. The target address
must be that of an instruction opcode within the method that contains the goto
instruction.

http://www.go2pdf.com

Mnemonic: goto_w

Operation: Branch always (wide index).

Opcode: 200 (0xC8)

Operands: branchbyte1, branchbyte2, branchbyte3, branchbyte4

Operand Stack: No change

Description: Unsigned bytes branchbyte1, branchbyte2, branchbyte3, and branchbyte4
construct into a 32-bit branchoffset, via (branchbyte1<<24)|(branchbyte2<<16)
|(branchbyte3<<8)|branchbyte4. Execution proceeds at branchoffset from the
address of this instruction’s opcode. The target address must be that of an
instruction opcode within the method that contains the goto_w instruction.

Notes: Despite the 32-bit branch address, other factors may limit the size of a method to
65535 bytes. Future releases of the JVM may raise this limit.

http://www.go2pdf.com

Mnemonic: i2b

Operation: Convert int to byte.

Opcode: 145 (0x91)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: value, which is on top of the operand stack, must be of int type. It pops from the
operand stack, truncates to a byte, and then sign-extends to an int result - which
pushes to the operand stack.

Notes: This instruction performs a narrowing primitive conversion. As a result,
information about value’s overall magnitude may be lost. Furthermore, result and
value may have different signs.

http://www.go2pdf.com

Mnemonic: i2c

Operation: Convert int to char.

Opcode: 146 (0x92)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: value, which is on top of the operand stack, must be of int type. It pops from the
operand stack, truncates to a char, and then zero-extends to an int result - which
pushes to the operand stack.

Notes: This instruction performs a narrowing primitive conversion. As a result,
information about value’s overall magnitude may be lost. Furthermore, result
(which is always positive) and value may have different signs.

http://www.go2pdf.com

Mnemonic: i2d

Operation: Convert int to double.

Opcode: 135 (0x87)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: value, which is on top of the operand stack, must be of int type. It pops from the
operand stack and converts to a double result - which pushes to the operand stack.

Notes: This instruction performs a widening primitive conversion. Because all int values
are exactly representable by double type, the conversion is exact.

http://www.go2pdf.com

Mnemonic: i2f

Operation: Convert int to float.

Opcode: 134 (0x86)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: value, which is on top of the operand stack, must be of int type. It pops from the
operand stack and converts to a float result (using IEEE 754 round to nearest
mode) - which pushes to the operand stack.

Notes: This instruction performs a widening primitive conversion, but may result in a loss
of precision because float values have only 24 significand bits.

http://www.go2pdf.com

Mnemonic: i2l

Operation: Convert int to long.

Opcode: 133 (0x85)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: value, which is on top of the operand stack, must be of int type. It pops from the
operand stack and sign-extends to a long result - which pushes to the operand
stack.

Notes: This instruction performs a widening primitive conversion. Because all int values
are exactly representable by type long, the conversion is exact.

http://www.go2pdf.com

Mnemonic: i2s

Operation: Convert int to short.

Opcode: 147 (0x93)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: value, which is on top of the operand stack, must be of int type. It pops from the
operand stack, truncates to a short, and then sign-extends to an int result - which
pushes to the operand stack.

Notes: This instruction performs a narrowing primitive conversion. As a result,
information about value’s overall magnitude may be lost. Furthermore, result and
value may have different signs.

http://www.go2pdf.com

Mnemonic: iadd

Operation: Add int.

Opcode: 96 (0x60)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: Both value1 and value2 must be of int type. Those values pop from the operand
stack. The int result from value1+value2 pushes to the operand stack.

The result is the 32 low-order bits of the true mathematical result in a sufficiently
wide two’s-complement format, represented as a value of int type. If overflow
occurs, the result’s sign may not be the same as the sign of the mathematical sum
of both values.

This instruction never throws an exception, even though overflow may occur.

http://www.go2pdf.com

Mnemonic: iaload

Operation: Load int from array.

Opcode: 46 (0x2E)

Operands: None

Operand Stack: Before: …, arrayref, index >>>
After: …, value

Description: arrayref must be of reference type and must refer to an array whose components
are of int type. Furthermore, index must be of int type. Both arrayref and index
pop from the operand stack. The int value in the array component at index
retrieves and pushes to the operand stack.

Runtime
Exceptions:

This instruction throws a NullPointerException if arrayref is null.

This instruction throws an ArrayIndexOutOfBoundsException if index is not
within the bounds of the arrayref-referenced array.

http://www.go2pdf.com

Mnemonic: iand

Operation: Boolean AND int.

Opcode: 126 (0x7E)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: Both value1 and value2 must be of int type. Those values pop from the operand
stack. The int result from a bitwise AND (conjunction) of both values pushes to
the operand stack.

http://www.go2pdf.com

Mnemonic: iastore

Operation: Store into int array.

Opcode: 79 (0x4F)

Operands: None

Operand Stack: Before: …, arrayref, index, value >>>
After: …

Description: arrayref must be of reference type and must refer to an array whose components
are of int type. Furthermore, index and value must both be of int type. arrayref,
index, and value pop from the operand stack. The int value stores as the array
component at index.

Runtime
Exceptions:

This instruction throws a NullPointerException if arrayref is null.

This instruction throws an ArrayIndexOutOfBoundsException if index is not
within the bounds of the arrayref-referenced array.

http://www.go2pdf.com

Mnemonic: iconst_0

Operation: Push int constant 0.

Opcode: 3 (0x03)

Operands: None

Operand Stack: Before: … >>>
After: …, 0

Description: Push the int constant 0 to the operand stack.

Notes: This instruction is equivalent to bipush 0, except that 0 is implicit in iconst_0.

http://www.go2pdf.com

Mnemonic: iconst_1

Operation: Push int constant 1.

Opcode: 4 (0x04)

Operands: None

Operand Stack: Before: … >>>
After: …, 1

Description: Push the int constant 1 to the operand stack.

Notes: This instruction is equivalent to bipush 1, except that 1 is implicit in iconst_1.

http://www.go2pdf.com

Mnemonic: iconst_2

Operation: Push int constant 2.

Opcode: 5 (0x05)

Operands: None

Operand Stack: Before: … >>>
After: …, 2

Description: Push the int constant 2 to the operand stack.

Notes: This instruction is equivalent to bipush 2, except that 2 is implicit in iconst_2.

http://www.go2pdf.com

Mnemonic: iconst_3

Operation: Push int constant 3.

Opcode: 6 (0x06)

Operands: None

Operand Stack: Before: … >>>
After: …, 3

Description: Push the int constant 3 to the operand stack.

Notes: This instruction is equivalent to bipush 3, except that 3 is implicit in iconst_3.

http://www.go2pdf.com

Mnemonic: iconst_4

Operation: Push int constant 4.

Opcode: 7 (0x07)

Operands: None

Operand Stack: Before: … >>>
After: …, 4

Description: Push the int constant 4 to the operand stack.

Notes: This instruction is equivalent to bipush 4, except that 4 is implicit in iconst_4.

http://www.go2pdf.com

Mnemonic: iconst_5

Operation: Push int constant 5.

Opcode: 8 (0x08)

Operands: None

Operand Stack: Before: … >>>
After: …, 5

Description: Push the int constant 5 to the operand stack.

Notes: This instruction is equivalent to bipush 5, except that 5 is implicit in iconst_5.

http://www.go2pdf.com

Mnemonic: iconst_m1

Operation: Push int constant -1.

Opcode: 2 (0x02)

Operands: None

Operand Stack: Before: … >>>
After: …, -1

Description: Push the int constant -1 to the operand stack.

Notes: This instruction is equivalent to bipush -1, except that -1 is implicit in iconst_m1.

http://www.go2pdf.com

Mnemonic: idiv

Operation: Divide int.

Opcode: 108 (0x6C)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of int type. Those values pop from the operand stack.
The int result from value1/value2 pushes to the operand stack.

This division rounds towards zero: the quotient produced for int values in n/d is an
int value q whose magnitude is as large as possible while satisfying |d.q|<=|n|. q is
positive when |n|>=|d| and n and d have the same sign. q is negative when |n|>=|d|
and n and d have opposite signs.

One special case does not satisfy this rule: if the dividend is the negative integer of
largest possible magnitude for the int type and the divisor is -1, overflow occurs
and the result equals the dividend. No exception is thrown in this case.

Runtime
Exceptions:

This instruction throws an ArithmeticException if the divisor’s value is 0.

http://www.go2pdf.com

Mnemonic: if_acmpeq

Operation: Branch if references are equal.

Opcode: 165 (0xA5)

Operands: branchbyte1, branchbyte2

Operand Stack: Before: …, value1, value2 >>>
After: …

Description: value1 and value2 must be of reference type. They pop from the operand stack
and compare. If both are equal, unsigned bytes branchbyte1 and branchbyte2
construct into a 16-bit branchoffset, via (branchbyte1<<8)|branchbyte2.
Execution proceeds at branchoffset from the address of this instruction’s opcode.
The target address must be that of an instruction opcode within the method that
contains the if_acmpeq instruction.

Otherwise, execution proceeds at the address of the instruction following this
instruction.

http://www.go2pdf.com

Mnemonic: if_acmpne

Operation: Branch if references are not equal.

Opcode: 166 (0xA6)

Operands: branchbyte1, branchbyte2

Operand Stack: Before: …, value1, value2 >>>
After: …

Description: value1 and value2 must be of reference type. They pop from the operand stack
and compare. If both are not equal, unsigned bytes branchbyte1 and branchbyte2
construct into a 16-bit branchoffset, via (branchbyte1<<8)|branchbyte2.
Execution proceeds at branchoffset from the address of this instruction’s opcode.
The target address must be that of an instruction opcode within the method that
contains the if_acmpne instruction.

Otherwise, execution proceeds at the address of the instruction following this
instruction.

http://www.go2pdf.com

Mnemonic: if_icmpeq

Operation: Branch if ints are equal.

Opcode: 159 (0x9F)

Operands: branchbyte1, branchbyte2

Operand Stack: Before: …, value1, value2 >>>
After: …

Description: value1 and value2 must be of int type. They pop from the operand stack and
compare. If both are equal, unsigned bytes branchbyte1 and branchbyte2
construct into a 16-bit branchoffset, via (branchbyte1<<8)|branchbyte2.
Execution proceeds at branchoffset from the address of this instruction’s opcode.
The target address must be that of an instruction opcode within the method that
contains the if_icmpeq instruction.

Otherwise, execution proceeds at the address of the instruction following this
instruction.

http://www.go2pdf.com

Mnemonic: if_icmpge

Operation: Branch if first int greater than or equal to second int.

Opcode: 162 (0xA2)

Operands: branchbyte1, branchbyte2

Operand Stack: Before: …, value1, value2 >>>
After: …

Description: value1 and value2 must be of int type. They pop from the operand stack and
compare. If value1 is greater than or equal to value2, unsigned bytes branchbyte1
and branchbyte2 construct into a 16-bit branchoffset, via
(branchbyte1<<8)|branchbyte2. Execution proceeds at branchoffset from the
address of this instruction’s opcode. The target address must be that of an
instruction opcode within the method that contains the if_icmpge instruction.

Otherwise, execution proceeds at the address of the instruction following this
instruction.

http://www.go2pdf.com

Mnemonic: if_icmpgt

Operation: Branch if first int greater than second int.

Opcode: 163 (0xA3)

Operands: branchbyte1, branchbyte2

Operand Stack: Before: …, value1, value2 >>>
After: …

Description: value1 and value2 must be of int type. They pop from the operand stack and
compare. If value1 is greater than value2, unsigned bytes branchbyte1 and
branchbyte2 construct into a 16-bit branchoffset, via
(branchbyte1<<8)|branchbyte2. Execution proceeds at branchoffset from the
address of this instruction’s opcode. The target address must be that of an
instruction opcode within the method that contains the if_icmpgt instruction.

Otherwise, execution proceeds at the address of the instruction following this
instruction.

http://www.go2pdf.com

Mnemonic: if_icmple

Operation: Branch if first int less than or equal to second int.

Opcode: 164 (0xA4)

Operands: branchbyte1, branchbyte2

Operand Stack: Before: …, value1, value2 >>>
After: …

Description: value1 and value2 must be of int type. They pop from the operand stack and
compare. If value1 is less than or equal to value2, unsigned bytes branchbyte1
and branchbyte2 construct into a 16-bit branchoffset, via
(branchbyte1<<8)|branchbyte2. Execution proceeds at branchoffset from the
address of this instruction’s opcode. The target address must be that of an
instruction opcode within the method that contains the if_icmple instruction.

Otherwise, execution proceeds at the address of the instruction following this
instruction.

http://www.go2pdf.com

Mnemonic: if_icmplt

Operation: Branch if first int less than second int.

Opcode: 161 (0xA1)

Operands: branchbyte1, branchbyte2

Operand Stack: Before: …, value1, value2 >>>
After: …

Description: value1 and value2 must be of int type. They pop from the operand stack and
compare. If value1 is less than value2, unsigned bytes branchbyte1 and
branchbyte2 construct into a 16-bit branchoffset, via
(branchbyte1<<8)|branchbyte2. Execution proceeds at branchoffset from the
address of this instruction’s opcode. The target address must be that of an
instruction opcode within the method that contains the if_icmplt instruction.

Otherwise, execution proceeds at the address of the instruction following this
instruction.

http://www.go2pdf.com

Mnemonic: if_icmpne

Operation: Branch if ints are not equal.

Opcode: 160 (0xA0)

Operands: branchbyte1, branchbyte2

Operand Stack: Before: …, value1, value2 >>>
After: …

Description: value1 and value2 must be of int type. They pop from the operand stack and
compare. If both are not equal, unsigned bytes branchbyte1 and branchbyte2
construct into a 16-bit branchoffset, via (branchbyte1<<8)|branchbyte2.
Execution proceeds at branchoffset from the address of this instruction’s opcode.
The target address must be that of an instruction opcode within the method that
contains the if_icmpne instruction.

Otherwise, execution proceeds at the address of the instruction following this
instruction.

http://www.go2pdf.com

Mnemonic: ifeq

Operation: Branch if int equals zero.

Opcode: 153 (0x99)

Operands: branchbyte1, branchbyte2

Operand Stack: Before: …, value >>>
After: …

Description: value must be of int type. It pops from the operand stack and compares against
zero. If value equals zero, unsigned bytes branchbyte1 and branchbyte2 construct
into a 16-bit branchoffset, via (branchbyte1<<8)|branchbyte2. Execution
proceeds at branchoffset from the address of this instruction’s opcode. The target
address must be that of an instruction opcode within the method that contains the
ifeq instruction.

Otherwise, execution proceeds at the address of the instruction following this
instruction.

http://www.go2pdf.com

Mnemonic: ifge

Operation: Branch if int greater than or equal to zero.

Opcode: 156 (0x9C)

Operands: branchbyte1, branchbyte2

Operand Stack: Before: …, value >>>
After: …

Description: value must be of int type. It pops from the operand stack and compares against
zero. If value is greater than or equal to zero, unsigned bytes branchbyte1 and
branchbyte2 construct into a 16-bit branchoffset, via
(branchbyte1<<8)|branchbyte2. Execution proceeds at branchoffset from the
address of this instruction’s opcode. The target address must be that of an
instruction opcode within the method that contains the ifge instruction.

Otherwise, execution proceeds at the address of the instruction following this
instruction.

http://www.go2pdf.com

Mnemonic: ifgt

Operation: Branch if int greater than zero.

Opcode: 157 (0x9D)

Operands: branchbyte1, branchbyte2

Operand Stack: Before: …, value >>>
After: …

Description: value must be of int type. It pops from the operand stack and compares against
zero. If value is greater than zero, unsigned bytes branchbyte1 and branchbyte2
construct into a 16-bit branchoffset, via (branchbyte1<<8)|branchbyte2.
Execution proceeds at branchoffset from the address of this instruction’s opcode.
The target address must be that of an instruction opcode within the method that
contains the ifgt instruction.

Otherwise, execution proceeds at the address of the instruction following this
instruction.

http://www.go2pdf.com

Mnemonic: ifle

Operation: Branch if int less than or equal to zero.

Opcode: 158 (0x9E)

Operands: branchbyte1, branchbyte2

Operand Stack: Before: …, value >>>
After: …

Description: value must be of int type. It pops from the operand stack and compares against
zero. If value is less than or equal to zero, unsigned bytes branchbyte1 and
branchbyte2 construct into a 16-bit branchoffset, via
(branchbyte1<<8)|branchbyte2. Execution proceeds at branchoffset from the
address of this instruction’s opcode. The target address must be that of an
instruction opcode within the method that contains the ifle instruction.

Otherwise, execution proceeds at the address of the instruction following this
instruction.

http://www.go2pdf.com

Mnemonic: iflt

Operation: Branch if int less than zero.

Opcode: 155 (0x9B)

Operands: branchbyte1, branchbyte2

Operand Stack: Before: …, value >>>
After: …

Description: value must be of int type. It pops from the operand stack and compares against
zero. If value is less than zero, unsigned bytes branchbyte1 and branchbyte2
construct into a 16-bit branchoffset, via (branchbyte1<<8)|branchbyte2.
Execution proceeds at branchoffset from the address of this instruction’s opcode.
The target address must be that of an instruction opcode within the method that
contains the iflt instruction.

Otherwise, execution proceeds at the address of the instruction following this
instruction.

http://www.go2pdf.com

Mnemonic: ifne

Operation: Branch if int not equal to zero.

Opcode: 154 (0x9A)

Operands: branchbyte1, branchbyte2

Operand Stack: Before: …, value >>>
After: …

Description: value must be of int type. It pops from the operand stack and compares against
zero. If value is not equal to zero, unsigned bytes branchbyte1 and branchbyte2
construct into a 16-bit branchoffset, via (branchbyte1<<8)|branchbyte2.
Execution proceeds at branchoffset from the address of this instruction’s opcode.
The target address must be that of an instruction opcode within the method that
contains the ifne instruction.

Otherwise, execution proceeds at the address of the instruction following this
instruction.

http://www.go2pdf.com

Mnemonic: ifnonnull

Operation: Branch if reference not null.

Opcode: 199 (0xC7)

Operands: branchbyte1, branchbyte2

Operand Stack: Before: …, value >>>
After: …

Description: value must be of reference type. It pops from the operand stack. If value is not
null, unsigned bytes branchbyte1 and branchbyte2 construct into a 16-bit
branchoffset, via (branchbyte1<<8)|branchbyte2. Execution proceeds at
branchoffset from the address of this instruction’s opcode. The target address
must be that of an instruction opcode within the method that contains the
ifnonnull instruction.

Otherwise, execution proceeds at the address of the instruction following this
instruction.

http://www.go2pdf.com

Mnemonic: ifnull

Operation: Branch if reference is null.

Opcode: 198 (0xC6)

Operands: branchbyte1, branchbyte2

Operand Stack: Before: …, value >>>
After: …

Description: value must be of reference type. It pops from the operand stack. If value is null,
unsigned bytes branchbyte1 and branchbyte2 construct into a 16-bit branchoffset,
via (branchbyte1<<8)|branchbyte2. Execution proceeds at branchoffset from the
address of this instruction’s opcode. The target address must be that of an
instruction opcode within the method that contains the ifnull instruction.

Otherwise, execution proceeds at the address of the instruction following this
instruction.

http://www.go2pdf.com

Mnemonic: iinc

Operation: Increment local variable by constant.

Opcode: 132 (0x84)

Operands: index, const

Operand Stack: No change

Description: index is an unsigned byte that must be an index into the current stack frame’s local
variable array. Furthermore, the local variable at index must contain an int. const
is an immediate signed byte. const first sign-extends to an int, and then the local
variable at index increments by that amount.

Notes: This instruction’s opcode can be used with the wide instruction’s opcode to access
a local variable using a two-byte unsigned index and to increment it by a two-byte
immediate value.

http://www.go2pdf.com

Mnemonic: iload

Operation: Load int from local variable.

Opcode: 21 (0x15)

Operands: index

Operand Stack: Before: … >>>
After: …, value

Description: index is an unsigned byte that must be an index into the current stack frame’s local
variable array. Furthermore, the local variable at index must contain an int. The
value of the local variable at index pushes to the operand stack.

Notes: This instruction’s opcode can be used with the wide instruction’s opcode to access
a local variable using a two-byte unsigned index.

http://www.go2pdf.com

Mnemonic: iload_0

Operation: Load int from local variable 0.

Opcode: 26 (0x1A)

Operands: None

Operand Stack: Before: … >>>
After: …, value

Description: 0 must be an index into the current stack frame’s local variable array.
Furthermore, the local variable at 0 must contain an int. The value of the local
variable at 0 pushes to the operand stack.

Notes: This instruction is the same as iload (with a 0 index operand), except that the 0 in
iload_0 is implicit.

http://www.go2pdf.com

Mnemonic: iload_1

Operation: Load int from local variable 1.

Opcode: 27 (0x1B)

Operands: None

Operand Stack: Before: … >>>
After: …, value

Description: 1 must be an index into the current stack frame’s local variable array.
Furthermore, the local variable at 1 must contain an int. The value of the local
variable at 1 pushes to the operand stack.

Notes: This instruction is the same as iload (with a 1 index operand), except that the 1 in
iload_1 is implicit.

http://www.go2pdf.com

Mnemonic: iload_2

Operation: Load int from local variable 2.

Opcode: 28 (0x1C)

Operands: None

Operand Stack: Before: … >>>
After: …, value

Description: 2 must be an index into the current stack frame’s local variable array.
Furthermore, the local variable at 2 must contain an int. The value of the local
variable at 2 pushes to the operand stack.

Notes: This instruction is the same as iload (with a 2 index operand), except that the 2 in
iload_2 is implicit.

http://www.go2pdf.com

Mnemonic: iload_3

Operation: Load int from local variable 3.

Opcode: 29 (0x1D)

Operands: None

Operand Stack: Before: … >>>
After: …, value

Description: 3 must be an index into the current stack frame’s local variable array.
Furthermore, the local variable at 3 must contain an int. The value of the local
variable at 3 pushes to the operand stack.

Notes: This instruction is the same as iload (with a 3 index operand), except that the 3 in
iload_3 is implicit.

http://www.go2pdf.com

Mnemonic: imul

Operation: Multiply int.

Opcode: 104 (0x68)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of int type. Those values pop from the operand stack.
The int result from value1*value2 pushes to the operand stack.

The result is the 32 low-order bits of the true mathematical result in a sufficiently
wide two’s-complement format, which represents as a value of int type. If
overflow occurs, the sign of the result may not be the same as the sign of the
mathematical sum of both values.

This instruction never throws an exception, even though overflow may occur.

http://www.go2pdf.com

Mnemonic: ineg

Operation: Negate int.

Opcode: 116 (0x74)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: value must be of int type. It pops from the operand stack. The int result is the
arithmetic negation of value, -value, which pushes to the operand stack.

Negation is the same as subtraction from zero, for int values. Because the JVM
uses two’s-complement representation for integers and the range of two’s-
complement values is asymmetric, the negation of the maximum negative integer
results in the same maximum negative integer. Despite this overflow, no exception
is thrown.

For all int values x, -x equals (~x)+1.

http://www.go2pdf.com

Mnemonic: instanceof

Operation: Determine if object is of given type.

Opcode: 193 (0xC1)

Operands: indexbyte1, indexbyte2

Operand Stack: Before: …, objectref >>>
After: …, result

Description: objectref, which must be of reference type, pops from the operand stack. The
unsigned indexbyte1 and indexbyte2 construct an index into the current class’s
runtime constant pool, via (indexbyte1<<8)|indexbyte2. The runtime constant pool
item at that index must be a symbolic reference to a class, array, or interface type.
The named class, array, or interface type then resolves.

If objectref is not null and is an instance of the resolved class or array or
implements the resolved interface, this instruction pushes an int result of 1 to the
operand stack. Otherwise, an int result of 0 pushes.

The following rules determine whether a non-null objectref is an instance of the
resolved type: If S is the class of the object referred to be objectref and T is the
resolved class, array, or interface type, this instruction determines whether
objectref is an instance of type T as follows:

1) If S is an ordinary (nonarray) class, then:

1.1) If T is a class type, then S must be the same class as T or a subclass of T.

1.2) If T is an interface type, then S must implement interface T.

2) If S is an interface type, then:

2.1) If T is a class type, then T must be Object.

2.2) If T is an interface type, then T must be the same interface as S or a
superinterface of S.

3) If S is a class representing the array type SC[] (an array of components of type
SC), then:

3.1) If T is a class type, then T must be Object.

3.2) If T is an array type TC[] (an array of components of type TC), then one of the
following must be true:

3.2.1) TC and SC are the same primitive type.

3.2.2) TC and SC are reference types, and type SC can be cast to TC by recursive

http://www.go2pdf.com

application of these rules.

3.3) If T is an interface type, T must be one of the interfaces implemented by
arrays.

Linking
Exceptions:

During resolution of the symbolic reference to the class, array, or interface type,
any of the exceptions documented in section 5.4.3.1 of the JVM specification can
be thrown.

Notes: This instruction is very similar to checkcast. However, instanceof differs in its
treatment of null, its behavior when its test fails (checkcast throws an exception,
whereas instanceof pushes a result code), and its effect on the operand stack.

http://www.go2pdf.com

Mnemonic: invokeinterface

Operation: Invoke interface method.

Opcode: 185 (0xB9)

Operands: indexbyte1, indexbyte2, count, 0

Operand Stack: Before: …, objectref, [arg1, [arg2 …]] >>>
After: …

Description: The unsigned indexbyte1 and indexbyte2 construct an index into the current
class’s runtime constant pool, where the index’s value is (indexbyte1<<8)|
indexbyte2. The runtime constant pool item at that index must be a symbolic
reference to an interface method, which gives the name and descriptor of the
interface method as well as a symbolic reference to the interface in which the
interface method is to be found. The named interface method resolves. The
interface method must not be an instance initialization method or the class or
interface initialization method.

count is an unsigned byte that must not be zero. Following count is a single 0
byte.

objectref must be of reference type and must be followed on the operand stack by
nargs argument values, where the number, type and order of the values must be
consistent with the resolved interface method’s descriptor.

Let C be objectref’s class. The actual method to be invoked is selected by the
following lookup procedure:

1) If C contains a declaration for an instance method with the same name and
descriptor as the resolved method, this is the method to be invoked, and the lookup
procedure terminates.

2) Otherwise, if C has a superclass, this same lookup procedure is performed
recursively using the direct superclass of C; the method to be invoked is the result
of the recursive invocation of this lookup procedure.

3) Otherwise, an AbstractMethodError is raised.

If the method is synchronized, the monitor associated with objectref is acquired
or rentered.

If the method is not native, the nargs argument values and objectref pop from the
operand stack. A new stack frame creates on the JVM stack for the method being
invoked. The objectref and argument values are consecutively made the values of
local variables of the new stack frame, with objectref in local variable 0, arg1 in
local variable 1 (or, if arg1 is of long or double type, in local variables 1 and 2),
and so on. Any argument value that is of a floating-point type undergoes value set
conversion prior to being stored in a local variable. The new stack frame is then
made current, and the JVM pc register is set to the opcode of the first instruction
of the method to be invoked. Execution continues with the first instruction of the

http://www.go2pdf.com

method.

If the method is native and the platform-dependent code that implements it has not
yet been bound into the JVM, that bounding is done. The nargs argument values
and objectref pop from the operand stack and pass as parameters to the code that
implements the method. Any argument value that is of a floating-point type
undergoes value set conversion prior to being passed as a parameter. The
parameters pass and the code invokes in an implementation-dependent manner.
When the platform-dependent code returns:

1) If the native method is synchronized, the monitor associated with objectref
releases or exits as if by execution of a monitorexit instruction.

2) If the native method returns a value, the return value of the platform-dependent
code converts in an implementation-dependent way to the return type of the native
method and pushes to the operand stack.

Linking
Exceptions:

During resolution of the symbolic reference to the interface method, any of the
exceptions documented in section 5.4.3.4 of the JVM specification can be thrown.

Runtime
Exceptions:

This instruction throws a NullPointerException if objectref is null.

This instruction throws an IncompatibleClassChangeError if objectref ’s class
does not implement the resolved interface.

This instruction throws an AbstractMethodError if no method matching the
resolved name and descriptor selects, or if the selected method is abstract.

This instruction throws an IllegalAccessError if the selected method is not
public.

This instruction throws an UnsatisfiedLinkError if the selected method is native
and the code that implements the method cannot be bound.

Notes: count records a measure of the number of argument values, where an argument
value of long or double type contributes two units to the count value and an
argument of any other type contributes one unit. This information can also be
derived from the selected method’s descriptor. The redundancy is historical.

The zero byte (following count) exists to reserve space for an additional operand
used in certain Sun implementations, which replace invokeinterface by a
specialized pseudo-instruction at runtime. It must be retained for backwards
compatibility.

The nargs argument values and objectref are not one-to-one with the first nargs
+1 local variables. Argument values of long and double types must store in two
consecutive local variables, thus more than nargs local variables may be required
to pass nargs argument values to the invoked method.

http://www.go2pdf.com

Mnemonic: invokespecial

Operation: Invoke instance method; special handling for superclass, private and instance
initialization method invocations.

Opcode: 183 (0xB7)

Operands: indexbyte1, indexbyte2

Operand Stack: Before: …, objectref, [arg1, [arg2 …]] >>>
After: …

Description: The unsigned indexbyte1 and indexbyte2 construct an index into the current
class’s runtime constant pool, where the index’s value is (indexbyte1<<8)|
indexbyte2. The runtime constant pool item at that index must be a symbolic
reference to a method, which gives the name and descriptor of the method as well
as a symbolic reference to the class in which the method is to be found. The
named method resolves. Finally, if the resolved method is protected, and it is
either a member of the current class or a member of a superclass of the current
class, objectref’s class must be either the current class or a subclass of the current
class.

Next, the resolved method selects for invocation unless all of the following
conditions are true:

1) The ACC_SUPER flag is set for the current class.

2) The resolved method’s class is a superclass of the current class.

3) The resolved method is not an instance initialization method.

If the above conditions are true, the actual method to be invoked is selected by the
following lookup procedure. Let C be the direct superclass of the current class:

1) If C contains a declaration for an instance method with the same name and
descriptor as the resolved method, this is the method to be invoked, and the lookup
procedure terminates.

2) Otherwise, if C has a superclass, this same lookup procedure is performed
recursively using the direct superclass of C; the method to be invoked is the result
of the recursive invocation of this lookup procedure.

3) Otherwise, an AbstractMethodError is raised.

objectref must be of reference type and must be followed on the operand stack by
nargs argument values, where the number, type and order of the values must be
consistent with the selected instance method’s descriptor.

If the method is synchronized, the monitor associated with objectref is acquired
or rentered.

http://www.go2pdf.com

If the method is not native, the nargs argument values and objectref pop from the
operand stack. A new stack frame creates on the JVM stack for the method being
invoked. The objectref and argument values are consecutively made the values of
local variables of the new stack frame, with objectref in local variable 0, arg1 in
local variable 1 (or, if arg1 is of long or double type, in local variables 1 and 2),
and so on. Any argument value that is of a floating-point type undergoes value set
conversion prior to being stored in a local variable. The new stack frame is then
made current, and the JVM pc register is set to the opcode of the first instruction
of the method to be invoked. Execution continues with the first instruction of the
method.

If the method is native and the platform-dependent code that implements it has not
yet been bound into the JVM, that bounding is done. The nargs argument values
and objectref pop from the operand stack and pass as parameters to the code that
implements the method. Any argument value that is of a floating-point type
undergoes value set conversion prior to being passed as a parameter. The
parameters pass and the code invokes in an implementation-dependent manner.
When the platform-dependent code returns:

1) If the native method is synchronized, the monitor associated with objectref
releases or exits as if by execution of a monitorexit instruction.

2) If the native method returns a value, the return value of the platform-dependent
code converts in an implementation-dependent way to the return type of the native
method and pushes to the operand stack.

Linking
Exceptions:

During resolution of the symbolic reference to the method, any of the exceptions
pertaining to method resolution documented in section 5.4.3.3 of the JVM
specification can be thrown.

This instruction throws a NoSuchMethodError if the resolved method is an
instance initialization method, and the class in which it declares is not the class
symbolically referenced by the instruction.

This instruction throws an IncompatibleClassChangeError if the resolved
method is a class (static) method.

This instruction throws an AbstractMethodError if no method matching the
resolved name and descriptor selects, or if the selected method is abstract.

Runtime
Exceptions:

This instruction throws a NullPointerException if objectref is null.

This instruction throws an UnsatisfiedLinkError if the selected method is native
and the code that implements the method cannot be bound.

Notes: The difference between invokespecial and invokevirtual is that invokevirtual
invokes a method based on the object’s class. The invokespecial instruction
invokes instance initialization methods as well as private methods and methods of
the current class’s superclass.

invokespecial was named invokenonvirtual prior to Sun’s JDK release 1.0.2.

http://www.go2pdf.com

The nargs argument values and objectref are not one-to-one with the first nargs
+1 local variables. Argument values of long and double types must store in two
consecutive local variables, thus more than nargs local variables may be required
to pass nargs argument values to the invoked method.

http://www.go2pdf.com

Mnemonic: invokestatic

Operation: Invoke class (static) method.

Opcode: 184 (0xB8)

Operands: indexbyte1, indexbyte2

Operand Stack: Before: …, [arg1, [arg2 …]] >>>
After: …

Description: The unsigned indexbyte1 and indexbyte2 construct an index into the current
class’s runtime constant pool, where the index’s value is (indexbyte1<<8)|
indexbyte2. The runtime constant pool item at that index must be a symbolic
reference to a method, which gives the name and descriptor of the method as well
as a symbolic reference to the class in which the method is to be found. The
named method resolves. The method must not be the class or interface
initialization method. It must be static, and therefore cannot be abstract.

On successful method resolution, the class declaring the resolved method
initializes (unless already initialized).

The operand stack must contain nargs argument values, where the number, type
and order of the values must be consistent with the resolved method’s descriptor.

If the method is synchronized, the monitor associated with the resolved class is
acquired or rentered.

If the method is not native, the nargs argument values pop from the operand
stack. A new stack frame creates on the JVM stack for the method being invoked.
The nargs argument values are consecutively made the values of local variables of
the new stack frame, with arg1 in local variable 0 (or, if arg1 is of long or double
type, in local variables 0 and 1), and so on. Any argument value that is of a
floating-point type undergoes value set conversion prior to being stored in a local
variable. The new stack frame is then made current, and the JVM pc register is set
to the opcode of the first instruction of the method to be invoked. Execution
continues with the first instruction of the method.

If the method is native and the platform-dependent code that implements it has not
yet been bound into the JVM, that bounding is done. The nargs argument values
pop from the operand stack and pass as parameters to the code that implements the
method. Any argument value that is of a floating-point type undergoes value set
conversion prior to being passed as a parameter. The parameters pass and the code
invokes in an implementation-dependent manner. When the platform-dependent
code returns:

1) If the native method is synchronized, the monitor associated with the resolved
class releases or exits as if by execution of a monitorexit instruction.

2) If the native method returns a value, the return value of the platform-dependent
code converts in an implementation-dependent way to the return type of the native
method and pushes to the operand stack.

http://www.go2pdf.com

Linking
Exceptions:

During resolution of the symbolic reference to the method, any of the exceptions
pertaining to method resolution documented in section 5.4.3.3 of the JVM
specification can be thrown.

This instruction throws an IncompatibleClassChangeError if the resolved
method is an instance method.

Runtime
Exceptions:

If execution of this instruction causes initialization of the referenced class, the
instruction may throw an Error as detailed in section 2.17.5 of the JVM
specification.

This instruction throws an UnsatisfiedLinkError if the resolved method is native
and the code that implements the method cannot be bound.

Notes: The nargs argument values are not one-to-one with the first nargs local variables.
Argument values of long and double types must store in two consecutive local
variables, thus more than nargs local variables may be required to pass nargs
argument values to the invoked method.

http://www.go2pdf.com

Mnemonic: invokevirtual

Operation: Invoke instance method; dispatch based on class.

Opcode: 182 (0xB6)

Operands: indexbyte1, indexbyte2

Operand Stack: Before: …, objectref, [arg1, [arg2 …]] >>>
After: …

Description: The unsigned indexbyte1 and indexbyte2 construct an index into the current
class’s runtime constant pool, where the index’s value is (indexbyte1<<8)|
indexbyte2. The runtime constant pool item at that index must be a symbolic
reference to a method, which gives the name and descriptor of the method as well
as a symbolic reference to the class in which the method is to be found. The
named method resolves. The method must not be an instance initialization method
or the class or interface initialization method. Finally, if the resolved method is
protected, and it is either a member of the current class or a member of a
superclass of the current class, objectref’s class must be either the current class or
a subclass of the current class.

Let C be objectref’s class. The actual method to be invoked is selected by the
following procedure:

1) If C contains a declaration for an instance method with the same name and
descriptor as the resolved method, and the resolved method is accessible from C,
this is the method to be invoked, and the lookup procedure terminates.

2) Otherwise, if C has a superclass, this same lookup procedure is performed
recursively using the direct superclass of C; the method to be invoked is the result
of the recursive invocation of this lookup procedure.

3) Otherwise, an AbstractMethodError is raised.

objectref must be of reference type and must be followed on the operand stack by
nargs argument values, where the number, type and order of the values must be
consistent with the selected instance method’s descriptor.

If the method is synchronized, the monitor associated with objectref is acquired
or rentered.

If the method is not native, the nargs argument values and objectref pop from the
operand stack. A new stack frame creates on the JVM stack for the method being
invoked. The objectref and argument values are consecutively made the values of
local variables of the new stack frame, with objectref in local variable 0, arg1 in
local variable 1 (or, if arg1 is of long or double type, in local variables 1 and 2),
and so on. Any argument value that is of a floating-point type undergoes value set
conversion prior to being stored in a local variable. The new stack frame is then
made current, and the JVM pc register is set to the opcode of the first instruction
of the method to be invoked. Execution continues with the first instruction of the
method.

http://www.go2pdf.com

If the method is native and the platform-dependent code that implements it has not
yet been bound into the JVM, that bounding is done. The nargs argument values
and objectref pop from the operand stack and pass as parameters to the code that
implements the method. Any argument value that is of a floating-point type
undergoes value set conversion prior to being passed as a parameter. The
parameters pass and the code invokes in an implementation-dependent manner.
When the platform-dependent code returns:

1) If the native method is synchronized, the monitor associated with objectref
releases or exits as if by execution of a monitorexit instruction.

2) If the native method returns a value, the return value of the platform-dependent
code converts in an implementation-dependent way to the return type of the native
method and pushes to the operand stack.

Linking
Exceptions:

During resolution of the symbolic reference to the method, any of the exceptions
pertaining to method resolution documented in section 5.4.3.3 of the JVM
specification can be thrown.

This instruction throws an IncompatibleClassChangeError if the resolved
method is a class (static) method.

Runtime
Exceptions:

This instruction throws a NullPointerException if objectref is null.

This instruction throws an AbstractMethodError if no method matching the
resolved name and descriptor selects, or if the selected method is abstract.

This instruction throws an UnsatisfiedLinkError if the selected method is native
and the code that implements the method cannot be bound.

Notes: The nargs argument values and objectref are not one-to-one with the first nargs
+1 local variables. Argument values of long and double types must store in two
consecutive local variables, thus more than nargs local variables may be required
to pass nargs argument values to the invoked method.

http://www.go2pdf.com

Mnemonic: ior

Operation: Boolean OR int.

Opcode: 128 (0x80)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of int type. Those values pop from the operand stack.
An int result calculates by taking the bitwise inclusive OR of value1 and value2.
The result pushes to the operand stack.

http://www.go2pdf.com

Mnemonic: irem

Operation: Remainder int.

Opcode: 112 (0x70)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of int type. Those values pop from the operand stack.
The int result from value1-(value1/value2)*value2 pushes to the operand stack.

The result of this instruction is such that (a/b)*b+(a%b) is equal to a. This identity
holds even in the special case in which the dividend is the negative int of largest
possible magnitude for its type and the divisor is -1 (the remainder is 0). It follows
from this rule that the result of the remainder operation can be negative only if the
dividend is negative and can be positive only if the dividend is positive. Moreover,
the result’s magnitude is always less than the divisor’s magnitude.

Runtime
Exceptions:

This instruction throws an ArithmeticException if the divisor’s value is 0.

http://www.go2pdf.com

Mnemonic: ireturn

Operation: Return int from method.

Opcode: 172 (0xAC)

Operands: None

Operand Stack: Before: …, value >>>
After: [empty]

Description: The current method’s return type must be one of boolean, byte, char, int, or
short. value’s type must be int. If the current method is synchronized, the
monitor acquired or reentered on that method’s invocation is released or exited
(respectively) as if by executing the monitorexit instruction. If no exception is
thrown, value pops from the current stack frame’s operand stack and pushes to the
operand stack of the invoker’s stack frame. Any other values on the current
method’s operand stack discard.

The interpreter returns control to the current method’s invoker, reinstating the
invoker’s stack frame as the current stack frame.

Runtime
Exceptions:

This instruction throws an IllegalMonitorStateException if the current method is
a synchronized method and the current thread is not the owner of the monitor
acquired or reentered on invocation of the method.

This instruction also throws an IllegalMonitorStateException if the JVM
implementation enforces the rules on structured lock usage, and the number of
lock operations performed by a thread on a lock does not match the number of
unlock operations by that thread on that lock (whether the method invocation
completes normally or abruptly).

http://www.go2pdf.com

Mnemonic: ishl

Operation: Shift left int.

Opcode: 120 (0x78)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: Both value1 and value2 must be of int type. Those values pop from the operand
stack. An int result calculates by shifting value1 left by s bit positions, where s is
the value of the low 5 bits of value2. The result pushes to the operand stack.

Notes: This is equivalent (even if overflow occurs) to multiplication by 2 to the power s.
The shift distance actually used is always in the range 0 to 31, inclusive, as if
value2 were subjected to a bitwise logical AND with the mask value 0x1F.

http://www.go2pdf.com

Mnemonic: ishr

Operation: Arithmetic shift right int.

Opcode: 122 (0x7A)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: Both value1 and value2 must be of int type. Those values pop from the operand
stack. An int result calculates by shifting value1 right by s bit positions, with sign
extension, where s is the value of the low 5 bits of value2. The result pushes to the
operand stack.

Notes: The resulting value is floor value1/2^s, where s is value2&0x1F. For nonnegative
value1, this is equivalent to truncating int division by 2 to the power s. The shift
distance actually used is always in the range 0 to 31, inclusive, as if value2 were
subjected to a bitwise logical AND with the mask value 0x1F.

http://www.go2pdf.com

Mnemonic: istore

Operation: Store int into local variable.

Opcode: 54 (0x36)

Operands: index

Operand Stack: Before: …, value >>>
After: …

Description: index is an unsigned byte that must be an index into the current stack frame’s local
variable array. Furthermore, the value on top of the operand stack must be of int
type. It pops from the operand stack, and the value of the local variable at index
sets to value.

Notes: This instruction’s opcode can be used with the wide instruction’s opcode to access
a local variable using a two-byte unsigned index.

http://www.go2pdf.com

Mnemonic: istore_0

Operation: Store int into local variable 0.

Opcode: 59 (0x3B)

Operands: None

Operand Stack: Before: …, value >>>
After: …

Description: 0 must be an index into the current stack frame’s local variable array.
Furthermore, the value on top of the operand stack must be of int type. It pops
from the operand stack, and the value of the local variable at 0 sets to value.

Notes: This instruction is the same as istore (with a 0 index operand), except that the 0 in
istore_0 is implicit.

http://www.go2pdf.com

Mnemonic: istore_1

Operation: Store int into local variable 1.

Opcode: 60 (0x3C)

Operands: None

Operand Stack: Before: …, value >>>
After: …

Description: 1 must be an index into the current stack frame’s local variable array.
Furthermore, the value on top of the operand stack must be of int type. It pops
from the operand stack, and the value of the local variable at 1 sets to value.

Notes: This instruction is the same as istore (with a 1 index operand), except that the 1 in
istore_1 is implicit.

http://www.go2pdf.com

Mnemonic: istore_2

Operation: Store int into local variable 2.

Opcode: 61 (0x3D)

Operands: None

Operand Stack: Before: …, value >>>
After: …

Description: 2 must be an index into the current stack frame’s local variable array.
Furthermore, the value on top of the operand stack must be of int type. It pops
from the operand stack, and the value of the local variable at 2 sets to value.

Notes: This instruction is the same as istore (with a 2 index operand), except that the 2 in
istore_2 is implicit.

http://www.go2pdf.com

Mnemonic: istore_3

Operation: Store int into local variable 3.

Opcode: 62 (0x3E)

Operands: None

Operand Stack: Before: …, value >>>
After: …

Description: 3 must be an index into the current stack frame’s local variable array.
Furthermore, the value on top of the operand stack must be of int type. It pops
from the operand stack, and the value of the local variable at 3 sets to value.

Notes: This instruction is the same as istore (with a 3 index operand), except that the 3 in
istore_3 is implicit.

http://www.go2pdf.com

Mnemonic: isub

Operation: Subtract int.

Opcode: 100 (0x64)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: Both value1 and value2 must be of int type. Those values pop from the operand
stack. The int result is value1-value2, which pushes to the operand stack.

For int subtraction, it is always the case that a-b results in the same value as a +(-
b). For int values, subtraction from zero is the same as negation.

The result is the 32 low-order bits of the true mathematical result in a sufficiently
wide two’s-complement format, represented as a value of int type. If overflow
occurs, the result’s sign may not be the same as the sign of the mathematical sum
of both values.

Despite the fact that overflow may occur, execution of this instruction never
throws a runtime exception.

http://www.go2pdf.com

Mnemonic: iushr

Operation: Logical shift right int.

Opcode: 124 (0x7C)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of int type. Those values pop from the operand stack.
An int result calculates by shifting value1 right by s bit positions, with zero
extension, where s is the value of value2’s low 5 bits. The result pushes to the
operand stack.

Notes: If value1 is positive and s is value2&0x1F, the result is the same as that of
value1>>s; if value1 is negative, the result is equal to the value of the expression
(value1>>s)+(2<<~s). The addition of the (2<<~s) term cancels out the
propagated sign bit. The shift distance actually used is always in the range 0 to 31,
inclusive.

http://www.go2pdf.com

Mnemonic: ixor

Operation: Boolean XOR int.

Opcode: 130 (0x82)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of int type. Those values pop from the operand stack.
An int result calculates by taking the bitwise exclusive OR of value1 and value2.
The result pushes to the operand stack.

http://www.go2pdf.com

Mnemonic: jsr

Operation: Jump subroutine.

Opcode: 168 (0xA8)

Operands: branchbyte1, branchbyte2

Operand Stack: Before: … >>>
After: …, address

Description: The address of the opcode of the instruction immediately following this
instruction pushes to the operand stack as a value of returnAddress type.
Unsigned bytes branchbyte1 and branchbyte2 construct into a 16-bit
branchoffset, via (branchbyte1<<8)|branchbyte2. Execution proceeds at
branchoffset from the address of this instruction. The target address must be that
of an instruction opcode within the method that contains the jsr instruction.

Notes: This instruction is used with the ret instruction to implement Java language finally
clauses. This instruction pushes the address to the operand stack and ret retrieves
that address from a local variable. That asymmetry is intentional.

http://www.go2pdf.com

Mnemonic: jsr_w

Operation: Jump subroutine (wide index).

Opcode: 201 (0xC9)

Operands: branchbyte1, branchbyte2, branchbyte3, branchbyte4

Operand Stack: Before: … >>>
After: …, address

Description: The address of the opcode of the instruction immediately following this
instruction pushes to the operand stack as a value of returnAddress type.
Unsigned bytes branchbyte1, branchbyte2, branchbyte3, and branchbyte4
construct into a 32-bit branchoffset, via (branchbyte1<<24)|(branchbyte2<<16)
|(branchbyte3<<8)|branchbyte4. Execution proceeds at branchoffset from the
address of this instruction. The target address must be that of an instruction opcode
within the method that contains the jsr_w instruction.

Notes: This instruction is used with the ret instruction to implement Java language finally
clauses. This instruction pushes the address to the operand stack and ret retrieves
that address from a local variable. That asymmetry is intentional.

Despite the 32-bit branch address, other factors may limit the size of a method to
65535 bytes. Future releases of the JVM may raise this limit.

http://www.go2pdf.com

Mnemonic: l2d

Operation: Convert long to double.

Opcode: 138 (0x8A)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: value, which is on top of the operand stack, must be of long type. It pops from the
operand stack and converts to a double result (using IEEE 754 round to nearest
mode), which pushes to the operand stack.

Notes: This instruction performs a widening primitive conversion that may lose precision
because double values have only 53 significand bits.

http://www.go2pdf.com

Mnemonic: l2f

Operation: Convert long to float.

Opcode: 137 (0x89)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: value, which is on top of the operand stack, must be of long type. It pops from the
operand stack and converts to a float result (using IEEE 754 round to nearest
mode), which pushes to the operand stack.

Notes: This instruction performs a widening primitive conversion that may lose precision
because float values have only 24 significand bits.

http://www.go2pdf.com

Mnemonic: l2i

Operation: Convert long to int.

Opcode: 136 (0x88)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: value, which is on top of the operand stack, must be of long type. It pops from the
operand stack and converts to an int result (by discarding the upper 32 bits),
which pushes to the operand stack.

Notes: This instruction performs a narrowing primitive conversion. As a result,
information about value’s overall magnitude may be lost. Furthermore, result and
value may have different signs.

http://www.go2pdf.com

Mnemonic: ladd

Operation: Add long.

Opcode: 97 (0x61)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: Both value1 and value2 must be of long type. Those values pop from the operand
stack. The long result from value1+value2 pushes to the operand stack.

The result is the 64 low-order bits of the true mathematical result in a sufficiently
wide two’s-complement format, represented as a value of long type. If overflow
occurs, the result’s sign may not be the same as the sign of the mathematical sum
of both values.

This instruction never throws an exception, even though overflow may occur.

http://www.go2pdf.com

Mnemonic: laload

Operation: Load long from array.

Opcode: 47 (0x2F)

Operands: None

Operand Stack: Before: …, arrayref, index >>>
After: …, value

Description: arrayref must be of reference type and must refer to an array whose components
are of long type. Furthermore, index must be of int type. Both arrayref and index
pop from the operand stack. The long value in the array component at index
retrieves and pushes to the operand stack.

Runtime
Exceptions:

This instruction throws a NullPointerException if arrayref is null.

This instruction throws an ArrayIndexOutOfBoundsException if index is not
within the bounds of the arrayref-referenced array.

http://www.go2pdf.com

Mnemonic: land

Operation: Boolean AND long.

Opcode: 127 (0x7F)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: Both value1 and value2 must be of long type. Those values pop from the operand
stack. The long result from a bitwise AND (conjunction) of both values pushes to
the operand stack.

http://www.go2pdf.com

Mnemonic: lastore

Operation: Store into long array.

Opcode: 80 (0x50)

Operands: None

Operand Stack: Before: …, arrayref, index, value >>>
After: …

Description: arrayref must be of reference type and must refer to an array whose components
are of long type. Furthermore, index must be of int type and value must both be of
long type. arrayref, index, and value pop from the operand stack. The long value
stores as the array component at index.

Runtime
Exceptions:

This instruction throws a NullPointerException if arrayref is null.

This instruction throws an ArrayIndexOutOfBoundsException if index is not
within the bounds of the arrayref-referenced array.

http://www.go2pdf.com

Mnemonic: lcmp

Operation: Compare long.

Opcode: 148 (0x94)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: Both value1 and value2 must be of long type. Those values pop from the operand
stack and a signed integer comparison occurs. If value1 is greater than value2, the
int value 1 pushes to the operand stack. If value1 equals value2, the int value 0
pushes to the operand stack. If value1 is less than value2, the int value -1 pushes
to the operand stack.

http://www.go2pdf.com

Mnemonic: lconst_0

Operation: Push long constant 0L.

Opcode: 9 (0x09)

Operands: None

Operand Stack: Before: … >>>
After: …, 0

Description: Push the long constant 0 to the operand stack.

http://www.go2pdf.com

Mnemonic: lconst_1

Operation: Push long constant 1L.

Opcode: 10 (0x0A)

Operands: None

Operand Stack: Before: … >>>
After: …, 1

Description: Push the long constant 1 to the operand stack.

http://www.go2pdf.com

Mnemonic: ldc

Operation: Push item from runtime constant pool.

Opcode: 18 (0x12)

Operands: index

Operand Stack: Before: … >>>
After: …, value

Description: index is an unsigned byte that must be a valid index into the current class’s
runtime constant pool. The pool’s entry at index must be a symbolic reference to a
class, a string literal, or a runtime constant of type int or float.

If the runtime constant pool entry is a symbolic reference to a class, the named
class is resolved and a reference to the Class object representing that class, value,
pushes to the operand stack.

If the runtime constant pool entry is a reference to an instance of class String
representing a string literal, a reference to that instance, value, pushes to the
operand stack.

If the runtime constant pool entry is a runtime constant of type int or float, that
constant’s int or float value pushes to the operand stack.

Linking
Exceptions:

During resolution of the symbolic reference to the class, any of the exceptions
pertaining to class resolution documented in section 5.4.3.1 of the JVM
specification can be thrown.

Notes: This instruction can only push a float value from the float value set because a
float constant in the constant pool must be taken from the float value set.

This instruction’s description has been updated to reflect Java 5 changes.

http://www.go2pdf.com

Mnemonic: ldc_w

Operation: Push item from runtime constant pool (wide index).

Opcode: 19 (0x13)

Operands: indexbyte1, indexbyte1

Operand Stack: Before: … >>>
After: …, value

Description: Assemble unsigned indexbyte1 and indexbyte2 into an unsigned 16-bit index into
the current class’s runtime constant pool, via (indexbyte1<<8)|indexbyte2. The
resulting index must be a valid index into the current class’s runtime constant
pool. The pool’s entry at the index must be a symbolic reference to a class, a string
literal, or a runtime constant of type int or float.

If the runtime constant pool entry is a symbolic reference to a class, the named
class is resolved and a reference to the Class object representing that class, value,
pushes to the operand stack.

If the runtime constant pool entry is a reference to an instance of class String
representing a string literal, a reference to that instance, value, pushes to the
operand stack.

If the runtime constant pool entry is a runtime constant of type int or float, that
constant’s int or float value pushes to the operand stack.

Linking
Exceptions:

During resolution of the symbolic reference to the class, any of the exceptions
pertaining to class resolution documented in section 5.4.3.1 of the JVM
specification can be thrown.

Notes: This instruction is identical to ldc, except for ldc_w’s wider runtime constant pool
index.

This instruction can only push a float value from the float value set because a
float constant in the constant pool must be taken from the float value set.

This instruction’s description has been updated to reflect Java 5 changes.

http://www.go2pdf.com

Mnemonic: ldc2_w

Operation: Push long or double from runtime constant pool (wide index).

Opcode: 20 (0x14)

Operands: indexbyte1, indexbyte1

Operand Stack: Before: … >>>
After: …, value

Description: Assemble unsigned indexbyte1 and indexbyte2 into an unsigned 16-bit index into
the current class’s runtime constant pool, via (indexbyte1<<8)|indexbyte2. The
resulting index must be a valid index into the current class’s runtime constant
pool. The pool’s entry at index must be a runtime constant of type long or double.
That constant’s long or double value pushes to the operand stack.

Notes: This instruction does not have a matching ldc2 instruction (which would use a
narrower single-byte index).

This instruction can only push a double value from the double value set because a
double constant in the constant pool must be taken from the double value set.

http://www.go2pdf.com

Mnemonic: ldiv

Operation: Divide long.

Opcode: 109 (0x6D)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of long type. Those values pop from the operand stack.
The long result from value1/value2 pushes to the operand stack.

This division rounds towards zero: the quotient produced for long values in n/d is
a long value q whose magnitude is as large as possible while satisfying |d.q| <= |n|.
q is positive when |n|>=|d| and n and d have the same sign. q is negative when
|n|>=|d| and n and d have opposite signs.

One special case does not satisfy this rule: if the dividend is the negative integer of
largest possible magnitude for the long type and the divisor is -1, overflow occurs
and the result equals the dividend. No exception is thrown in this case.

Runtime
Exceptions:

This instruction throws an ArithmeticException if the divisor’s value is 0.

http://www.go2pdf.com

Mnemonic: lload

Operation: Load long from local variable.

Opcode: 22 (0x16)

Operands: index

Operand Stack: Before: … >>>
After: …, value

Description: index is an unsigned byte. Both index and index+1 must be indices into the
current stack frame’s local variable array. Furthermore, the local variable at index
must contain a long. The value of the local variable at index pushes to the operand
stack.

Notes: This instruction’s opcode can be used with the wide instruction’s opcode to access
a local variable using a two-byte unsigned index.

http://www.go2pdf.com

Mnemonic: lload_0

Operation: Load long from local variable 0.

Opcode: 30 (0x1E)

Operands: None

Operand Stack: Before: … >>>
After: …, value

Description: 0 and 1 must be indices into the current stack frame’s local variable array.
Furthermore, the local variable at 0 must contain a long. The value of the local
variable at 0 pushes to the operand stack.

Notes: This instruction is the same as lload (with a 0 index operand), except that the 0 in
lload_0 is implicit.

http://www.go2pdf.com

Mnemonic: lload_1

Operation: Load long from local variable 1.

Opcode: 31 (0x1F)

Operands: None

Operand Stack: Before: … >>>
After: …, value

Description: 1 and 2 must be indices into the current stack frame’s local variable array.
Furthermore, the local variable at 1 must contain a long. The value of the local
variable at 1 pushes to the operand stack.

Notes: This instruction is the same as lload (with a 1 index operand), except that the 1 in
lload_1 is implicit.

http://www.go2pdf.com

Mnemonic: lload_2

Operation: Load long from local variable 2.

Opcode: 32 (0x20)

Operands: None

Operand Stack: Before: … >>>
After: …, value

Description: 2 and 3 must be indices into the current stack frame’s local variable array.
Furthermore, the local variable at 2 must contain a long. The value of the local
variable at 2 pushes to the operand stack.

Notes: This instruction is the same as lload (with a 2 index operand), except that the 2 in
lload_2 is implicit.

http://www.go2pdf.com

Mnemonic: lload_3

Operation: Load long from local variable 3.

Opcode: 33 (0x21)

Operands: None

Operand Stack: Before: … >>>
After: …, value

Description: 3 and 4 must be indices into the current stack frame’s local variable array.
Furthermore, the local variable at 3 must contain a long. The value of the local
variable at 3 pushes to the operand stack.

Notes: This instruction is the same as lload (with a 3 index operand), except that the 3 in
lload_3 is implicit.

http://www.go2pdf.com

Mnemonic: lmul

Operation: Multiply long.

Opcode: 105 (0x69)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of long type. Those values pop from the operand stack.
The long result from value1*value2 pushes to the operand stack.

The result is the 64 low-order bits of the true mathematical result in a sufficiently
wide two’s-complement format, which represents as a value of long type. If
overflow occurs, the sign of the result may not be the same as the sign of the
mathematical sum of both values.

This instruction never throws an exception, even though overflow may occur.

http://www.go2pdf.com

Mnemonic: lneg

Operation: Negate long.

Opcode: 117 (0x75)

Operands: None

Operand Stack: Before: …, value >>>
After: …, result

Description: value must be of long type. It pops from the operand stack. The long result is the
arithmetic negation of value, -value, which pushes to the operand stack.

Negation is the same as subtraction from zero, for long values. Because the JVM
uses two’s-complement representation for integers and the range of two’s-
complement values is asymmetric, the negation of the maximum negative long
integer results in the same maximum negative long integer. Despite this overflow,
no exception is thrown.

For all long values x, -x equals (~x)+1.

http://www.go2pdf.com

Mnemonic: lookupswitch

Operation: Access jump table by key match and jump.

Opcode: 171 (0xAB)

Operands: <0-3 byte pad>, defaultbyte1, defaultbyte2, defaultbyte3, defaultbyte4, npairs1,
npairs2, npairs3, npairs4, match-offset pairs…

Operand Stack: Before: …, key >>>
After: …

Description: This instruction is variable-length. Immediately after its opcode, between 0 and 3
null bytes (zero bytes, not the null object) insert as padding. The number of null
bytes is chosen so that defaultbyte1 begins at an address that is a multiple of four
bytes from the start of the current method (the opcode of its first instruction).
Immediately after the padding follows a series of signed 32-bit values: default,
npairs, and then npairs pairs of signed 32-bit values. npairs must be greater than
or equal to 0. Each of the npairs pairs consists of an int match and a signed 32-bit
offset. Each of these signed 32-bit values constructs as
(byte1<<24)|(byte2<<16)|(byte3<<8)|byte4.

The match-offset pairs table must be sorted in increasing numerical order of
match.

key must be of int type and pops from the operand stack. key compares against
match values. If it equals one of them, a target address calculates by adding the
corresponding offset to the address of this instruction’s opcode. If key doesn’t
match any match value, the target address calculates by adding default to the
address of this instruction’s opcode. Execution continues at the target address.

The target address that can be calculated from the offset of each match-offset pair,
as well as the one calculated from default, must be the address of an opcode of an
instruction within the method that contains the lookupswitch instruction.

Notes: The alignment required of the 4-byte operands of this instruction guarantees 4-
byte alignment of those operands if and only if the method containing this
instruction starts on a 4-byte boundary.

The match-offset pairs are sorted to support lookup routines that are quicker than
linear search.

http://www.go2pdf.com

Mnemonic: lor

Operation: Boolean OR long.

Opcode: 129 (0x81)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of long type. Those values pop from the operand stack.
A long result calculates by taking the bitwise inclusive OR of value1 and value2.
The result pushes to the operand stack.

http://www.go2pdf.com

Mnemonic: lrem

Operation: Remainder long.

Opcode: 113 (0x71)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of long type. Those values pop from the operand stack.
The long result from value1-(value1/value2)*value2 pushes to the operand stack.

The result of this instruction is such that (a/b)*b+(a%b) is equal to a. This identity
holds even in the special case in which the dividend is the negative long of largest
possible magnitude for its type and the divisor is -1 (the remainder is 0). It follows
from this rule that the result of the remainder operation can be negative only if the
dividend is negative and can be positive only if the dividend is positive. Moreover,
the result’s magnitude is always less than the divisor’s magnitude.

Runtime
Exceptions:

This instruction throws an ArithmeticException if the divisor’s value is 0.

http://www.go2pdf.com

Mnemonic: lreturn

Operation: Return long from method.

Opcode: 173 (0xAD)

Operands: None

Operand Stack: Before: …, value >>>
After: [empty]

Description: Both the current method’s return type and value’s type must be long. If the current
method is synchronized, the monitor acquired or reentered on that method’s
invocation is released or exited (respectively) as if by executing the monitorexit
instruction. If no exception is thrown, value pops from the current stack frame’s
operand stack and pushes to the operand stack of the invoker’s stack frame. Any
other values on the current method’s operand stack discard.

The interpreter returns control to the current method’s invoker, reinstating the
invoker’s stack frame as the current stack frame.

Runtime
Exceptions:

This instruction throws an IllegalMonitorStateException if the current method is
a synchronized method and the current thread is not the owner of the monitor
acquired or reentered on invocation of the method.

This instruction also throws an IllegalMonitorStateException if the JVM
implementation enforces the rules on structured lock usage, and the number of
lock operations performed by a thread on a lock does not match the number of
unlock operations by that thread on that lock (whether the method invocation
completes normally or abruptly).

http://www.go2pdf.com

Mnemonic: lshl

Operation: Shift left long.

Opcode: 121 (0x79)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 must be of long type and value2 must be of int type. Those values pop
from the operand stack. A long result calculates by shifting value1 left by s bit
positions, where s is the value of the low 6 bits of value2. The result pushes to the
operand stack.

Notes: This is equivalent (even if overflow occurs) to multiplication by 2 to the power s.
The shift distance actually used is always in the range 0 to 63, inclusive, as if
value2 were subjected to a bitwise logical AND with the mask value 0x3F.

http://www.go2pdf.com

Mnemonic: lshr

Operation: Arithmetic shift right long.

Opcode: 123 (0x7B)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 must be of long type and value2 must be of int type. Those values pop
from the operand stack. A long result calculates by shifting value1 right by s bit
positions, with sign extension, where s is the value of the low 6 bits of value2. The
result pushes to the operand stack.

Notes: The resulting value is floor value1/2^s, where s is value2&0x3F. For nonnegative
value1, this is equivalent to truncating long division by 2 to the power s. The shift
distance actually used is always in the range 0 to 63, inclusive, as if value2 were
subjected to a bitwise logical AND with the mask value 0x3F.

http://www.go2pdf.com

Mnemonic: lstore

Operation: Store long into local variable.

Opcode: 55 (0x37)

Operands: index

Operand Stack: Before: …, value >>>
After: …

Description: index is an unsigned byte. Both index and index+1 must be indices into the
current stack frame’s local variable array. Furthermore, the value on top of the
operand stack must be of long type. It pops from the operand stack, and the value
of the local variables at index and index+1 set to value.

Notes: This instruction’s opcode can be used with the wide instruction’s opcode to access
a local variable using a two-byte unsigned index.

http://www.go2pdf.com

Mnemonic: lstore_0

Operation: Store long into local variable 0.

Opcode: 63 (0x3F)

Operands: None

Operand Stack: Before: …, value >>>
After: …

Description: 0 and 1 must be indices into the current stack frame’s local variable array.
Furthermore, the value on top of the operand stack must be of long type. It pops
from the operand stack and stores in the local variables at 0 and 1.

Notes: This instruction is the same as lstore (with a 0 index operand), except that the 0 in
lstore_0 is implicit.

http://www.go2pdf.com

Mnemonic: lstore_1

Operation: Store long into local variable 1.

Opcode: 64 (0x40)

Operands: None

Operand Stack: Before: …, value >>>
After: …

Description: 1 and 2 must be indices into the current stack frame’s local variable array.
Furthermore, the value on top of the operand stack must be of long type. It pops
from the operand stack and stores in the local variables at 1 and 2.

Notes: This instruction is the same as lstore (with a 1 index operand), except that the 1 in
lstore_1 is implicit.

http://www.go2pdf.com

Mnemonic: lstore_2

Operation: Store long into local variable 2.

Opcode: 65 (0x41)

Operands: None

Operand Stack: Before: …, value >>>
After: …

Description: 2 and 3 must be indices into the current stack frame’s local variable array.
Furthermore, the value on top of the operand stack must be of long type. It pops
from the operand stack and stores in the local variables at 2 and 3.

Notes: This instruction is the same as lstore (with a 2 index operand), except that the 2 in
lstore_2 is implicit.

http://www.go2pdf.com

Mnemonic: lstore_3

Operation: Store long into local variable 3.

Opcode: 66 (0x42)

Operands: None

Operand Stack: Before: …, value >>>
After: …

Description: 3 and 4 must be indices into the current stack frame’s local variable array.
Furthermore, the value on top of the operand stack must be of long type. It pops
from the operand stack and stores in the local variables at 3 and 4.

Notes: This instruction is the same as lstore (with a 3 index operand), except that the 3 in
lstore_3 is implicit.

http://www.go2pdf.com

Mnemonic: lsub

Operation: Subtract long.

Opcode: 101 (0x65)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: Both value1 and value2 must be of long type. Those values pop from the operand
stack. The long result is value1-value2, which pushes to the operand stack.

For long subtraction, it is always the case that a-b results in the same value as a
+(-b). For long values, subtraction from zero is the same as negation.

The result is the 64 low-order bits of the true mathematical result in a sufficiently
wide two’s-complement format, represented as a value of long type. If overflow
occurs, the result’s sign may not be the same as the sign of the mathematical sum
of both values.

Despite the fact that overflow may occur, execution of this instruction never
throws a runtime exception.

http://www.go2pdf.com

Mnemonic: lushr

Operation: Logical shift right long.

Opcode: 125 (0x7D)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 must be of long type and value2 must be of int type. Those values pop
from the operand stack. A long result calculates by shifting value1 right by s bit
positions, with zero extension, where s is the value of value2’s low 6 bits. The
result pushes to the operand stack.

Notes: If value1 is positive and s is value2&0x3F, the result is the same as that of
value1>>s; if value1 is negative, the result is equal to the value of the expression
(value1>>s)+(2L<<~s). The addition of the (2L<<~s) term cancels out the
propagated sign bit. The shift distance actually used is always in the range 0 to 63,
inclusive.

http://www.go2pdf.com

Mnemonic: lxor

Operation: Boolean XOR long.

Opcode: 131 (0x83)

Operands: None

Operand Stack: Before: …, value1, value2 >>>
After: …, result

Description: value1 and value2 must be of long type. Those values pop from the operand stack.
A long result calculates by taking the bitwise exclusive OR of value1 and value2.
The result pushes to the operand stack.

http://www.go2pdf.com

Mnemonic: monitorenter

Operation: Enter monitor for object.

Opcode: 194 (0xC2)

Operands: None

Operand Stack: Before: …, objectref >>>
After: …

Description: objectref must be of reference type.

Each object has an associated monitor. The thread that executes this instruction
gains ownership of the monitor that associates with objectref. If another thread
already owns the monitor associated with objectref, the current thread waits until
the object unlocks, and then tries again to gain ownership. If the current thread
already owns the monitor that associates with objectref, it increments a counter in
the monitor indicating the number of times this thread has entered the monitor. If
the monitor associated with objectref is not owned by any thread, the current
thread becomes the monitor’s owner and sets the monitor’s entry count to 1.

Runtime
Exceptions:

This instruction throws a NullPointerException if objectref is null.

http://www.go2pdf.com

Mnemonic: monitorexit

Operation: Exit monitor for object.

Opcode: 195 (0xC3)

Operands: None

Operand Stack: Before: …, objectref >>>
After: …

Description: objectref must be of reference type.

The current thread should be the owner of the monitor associated with the
objectref -referenced instance. The thread decrements the counter indicating the
number of times it has entered this monitor. If (as a result) the value of the counter
becomes zero, the current thread releases the monitor. If the monitor associated
with objectref becomes free, other threads waiting to acquire that monitor are
allowed to attempt to do so.

Runtime
Exceptions:

This instruction throws a NullPointerException if objectref is null.

This instruction throws an IllegalMonitorStateException if the current thread is
not the owner of the monitor.

This instruction also throws an IllegalMonitorStateException if the JVM
implementation enforces the rules on structured lock usage, and the number of
unlock operations performed by a thread on a lock exceeds the number of lock
operations performed by the thread on that lock since the method invocation.

http://www.go2pdf.com

Mnemonic: multianewarray

Operation: Create new multidimensional array.

Opcode: 197 (0xC5)

Operands: indexbyte1, indexbyte2, dimensions

Operand Stack: Before: …, count1, [count2, …] >>>
After: …, arrayref

Description: dimensions is an unsigned byte that must be greater than or equal to 1. It
represents the number of dimensions of the array to be created. The operand stack
must contain dimensions values. Each such value represents the number of
components in a dimension of the array to be created, must be of int type, and
must be nonnegative. count1 is the desired length in the first dimension, count2 is
the desired length in the second dimension, and so on.

All count values pop from the operand stack. The unsigned indexbyte1 and
indexbyte2 construct an index into the current class’s runtime constant pool, where
the index value is (indexbyte1<<8) | indexbyte2. The runtime constant pool item at
that index must be a symbolic reference to a class, array, or interface type. The
named class, array, or interface type resolves. The resulting entry must be an array
class type of dimensionality greater than or equal to dimensions.

A new multidimensional array of the array type allocates from the garbage-
collected heap. If any count value is zero, no subsequent dimensions allocate. The
components of the array in the first dimension initialize to subarrays of the second
dimension’s type, and so on. The components of the last allocated array dimension
initialize to the default initial value for the components type. A reference arrayref
to the new array pushes to the operand stack.

Linking
Exceptions:

During resolution of the symbolic reference to the class, array, or interface type,
any of the exceptions documented in section 5.4.3.1 of the JVM specification can
be thrown.

This instruction throws an IllegalAccessError if the current class does not have
permission to access the element type of the resolved array class.

Runtime
Exceptions:

This instruction throws a NegativeArraySizeException if any of the dimensions
values are less than zero.

Notes: It may be more efficient to use newarray or anewarray when creating an array of
a single dimension.

The array class referenced via the runtime constant pool may have more
dimensions than the dimensions of the multianewarray instruction. In that case,
only the first dimensions of the array create.

http://www.go2pdf.com

Mnemonic: new

Operation: Create new object.

Opcode: 187 (0xBB)

Operands: indexbyte1, indexbyte2

Operand Stack: Before: … >>>
After: …, objectref

Description: The unsigned indexbyte1 and indexbyte2 construct an index into the current
class’s runtime constant pool, where the index value is
(indexbyte1<<8)|indexbyte2. The runtime constant pool item at that index must be
a symbolic reference to a class, array, or interface type. The named class, array, or
interface type resolves and should result in a class type (it should not result in an
array or interface type). Memory for a new instance of that class allocates from the
garbage-collected heap, and the instance variables of the new object initialize to
their default initial values. The objectref, a reference to the instance, pushes to the
operand stack.

On successful resolution of the class, it initializes if not already initialized.

Linking
Exceptions:

During resolution of the symbolic reference to the class, array, or interface type,
any of the exceptions documented in section 5.4.3.1 of the JVM specification can
be thrown.

This instruction throws an InstantiationError if the symbolic reference to the
class, array, or interface type resolves to an interface or is an abstract class.

Runtime
Exceptions:

If execution of this instruction causes initialization of the referenced class or
interface, the instruction may throw an Error as detailed in section 2.17.5 of the
JVM specification.

Notes: This instruction does not completely create a new instance; instance creation is not
completed until an instance initialization method has been invoked on the
uninitialized instance.

http://www.go2pdf.com

Mnemonic: newarray

Operation: Create new array.

Opcode: 188 (0xBC)

Operands: atype

Operand Stack: Before: …, count >>>
After: …, arrayref

Description: count, which must be of int type, pops from the operand stack and represents the
number of array components to be created.

atype is a code that indicates the type of array to create: 4 (T_BOOLEAN), 5
(T_CHAR), 6 (T_FLOAT), 7 (T_DOUBLE), 8 (T_BYTE), 9 (T_SHORT), 10
(T_INT), 11 (T_LONG).

A new array of count length and whose components are of atype type allocates
from the garbage-collected heap. A reference arrayref to this new array object
pushes to the operand stack. Each of the new array’s components initializes to the
default initial value of the array’s type.

Runtime
Exceptions:

This instruction throws a NegativeArraySizeException if count is less than zero.

Notes: Sun’s JVM implementation implements boolean arrays as arrays of 8-bit values.

http://www.go2pdf.com

Mnemonic: nop

Operation: No operation.

Opcode: 0 (0x00)

Operands: None

Operand Stack: Unchanged

Description: Don’t do anything.

http://www.go2pdf.com

Mnemonic: pop

Operation: Pop the top operand stack value.

Opcode: 87 (0x57)

Operands: None

Operand Stack: Before: …, value >>>
After: …

Description: Pop the top value from the operand stack.

This instruction must not be used if value is of long or double type.

http://www.go2pdf.com

Mnemonic: pop2

Operation: Pop the top one or two operand stack values.

Opcode: 88 (0x58)

Operands: None

Operand Stack: Before: …, value2, value1 >>>
After: …

value1 and value2 must not be of type double or long.

Before: …, value >>>
After: …

value must be of type double or long.

Description: Pop the top one or two values from the operand stack.

http://www.go2pdf.com

Mnemonic: putfield

Operation: Set field in object.

Opcode: 181 (0xB5)

Operands: indexbyte1, indexbyte2

Operand Stack: Before: …, objectref, value >>>
After: …

Description: The unsigned indexbyte1 and indexbyte2 construct an index into the current
class’s runtime constant pool, where the index value is
(indexbyte1<<8)|indexbyte2. The runtime constant pool item at that index must be
a symbolic reference to a field, which gives the name and descriptor of the field as
well as a symbolic reference to the class in which the field is to be found.
objectref’s class must not be an array. If the field is protected and a member of a
superclass of the current class, and the field is not declared in the same run-time
package as the current class, objectref’s class must be either the current class or a
subclass of the current class.

The referenced field resolves. value’s type must be compatible with the referenced
field’s descriptor. If the field descriptor’s type is boolean, byte, char, int, or
short, value must be an int. If the field descriptor’s type is double, float, or long,
value must be a double, float, or long, respectively. If the field descriptor’s type is
a reference type, value must be of a type that is assignment compatible with the
field descriptor type. If the field is final, it should be declared in the <init>
method of the current class and objectref must be the this argument of the <init>
method. Otherwise, an IllegalAccessError throws.

value and objectref pop from the operand stack. objectref must be of reference
type. value undergoes value set conversion, resulting in value’, and the referenced
field in objectref sets to value’.

Linking
Exceptions:

During resolution of the symbolic reference to the field, any of the exceptions
pertaining to field resolution documented in section 5.4.3.2 of the JVM
specification can be thrown.

This instruction throws an IncompatibleClassChangeError if the resolved field
is a static field.

This instruction throws an IllegalAccessError if the field is final but not declared
in the <init> method of the current class, or objectref is not the this argument of
the <init> method.

Runtime
Exceptions:

This instruction throws a NullPointerException if objectref is null.

Notes: This instruction’s description has been updated to reflect Java 5 changes.

http://www.go2pdf.com

Mnemonic: putstatic

Operation: Set static field in class.

Opcode: 179 (0xB3)

Operands: indexbyte1, indexbyte2

Operand Stack: Before: …, value >>>
After: …

Description: The unsigned indexbyte1 and indexbyte2 construct an index into the current
class’s runtime constant pool, where the index value is
(indexbyte1<<8)|indexbyte2. The runtime constant pool item at that index must be
a symbolic reference to a field, which gives the name and descriptor of the field as
well as a symbolic reference to the class or interface in which the field is to be
found. The referenced field resolves.

On successful resolution of the field, the class or interface that declares the
resolved field initializes (unless already initialized).

value’s type must be compatible with the referenced field’s descriptor. If the field
descriptor’s type is boolean, byte, char, int, or short, value must be an int. If the
field descriptor’s type is double, float, or long, value must be a double, float, or
long, respectively. If the field descriptor’s type is a reference type, value must be
of a type that is assignment compatible with the field descriptor type. If the field is
final, it should be declared in the <clinit> method of the current class. Otherwise,
an IllegalAccessError throws.

value pops from the operand stack and undergoes value set conversion, resulting
in value’. The class field sets to value’.

Linking
Exceptions:

During resolution of the symbolic reference to the field, any of the exceptions
pertaining to field resolution documented in section 5.4.3.2 of the JVM
specification can be thrown.

This instruction throws an IncompatibleClassChangeError if the resolved field
is not a class (static) field or an interface field.

This instruction throws an IllegalAccessError if the field is final but not declared
in the <clinit> method of the current class.

Runtime
Exceptions:

If execution of this instruction causes initialization of the referenced class or
interface, the instruction may throw an Error as detailed in section 2.17.5 of the
JVM specification.

Notes: This instruction may be used only to set the value of an interface field on the
initialization of that field. Interface fields may be assigned to only once, on
execution of an interface variable initialization expression when the interface
initializes.

This instruction’s description has been updated to reflect Java 5 changes.

http://www.go2pdf.com

Mnemonic: ret

Operation: Return from subroutine.

Opcode: 169 (0xA9)

Operands: index

Operand Stack: No change

Description: index is an unsigned byte between 0 and 255 (inclusive). The local variable at
index in the current stack frame must contain a value of returnAddress type. The
contents of the local variable write to the JVM’s pc register, and execution
continues there.

Notes: This instruction is used with jsr and jsr_w to implement Java language finally
clauses. jsr / jsr_w pushes the address to the operand stack and this instruction
retrieves that address from a local variable. That asymmetry is intentional.

Do not confuse this instruction with return. A return instruction returns control
from a method to its invoker, without passing any value back to the invoker.

This instruction’s opcode can be used with the wide instruction’s opcode to access
a local variable using a two-byte unsigned index.

http://www.go2pdf.com

Mnemonic: return

Operation: Return void from method.

Opcode: 177 (0xB1)

Operands: None

Operand Stack: Before: … >>>
After: [empty]

Description: The current method must have the void return type. If the method is
synchronized, the monitor acquired or reentered on the method’s invocation
releases or exits (respectively) as if by executing monitorexit. If no exception is
thrown, any other values on the current method’s operand stack discard.

The interpreter returns control to the current method’s invoker, reinstating the
invoker’s stack frame as the current stack frame.

Runtime
Exceptions:

This instruction throws an IllegalMonitorStateException if the current method is
a synchronized method and the current thread is not the owner of the monitor
acquired or reentered on invocation of the method.

This instruction also throws an IllegalMonitorStateException if the JVM
implementation enforces the rules on structured lock usage, and the number of
lock operations performed by a thread on a lock does not match the number of
unlock operations by that thread on that lock (whether the method invocation
completes normally or abruptly).

http://www.go2pdf.com

Mnemonic: saload

Operation: Load short from array.

Opcode: 53 (0x35)

Operands: None

Operand Stack: Before: …, arrayref, index >>>
After: …, value

Description: arrayref must be of reference type and must refer to an array whose components
are of short type. Furthermore, index must be of int type. Both arrayref and index
pop from the operand stack. The array component at index retrieves and sign-
extends to an int value, which pushes to the operand stack.

Runtime
Exceptions:

This instruction throws a NullPointerException if arrayref is null.

This instruction throws an ArrayIndexOutOfBoundsException if index is not
within the bounds of the arrayref-referenced array.

http://www.go2pdf.com

Mnemonic: sastore

Operation: Store into short array.

Opcode: 86 (0x56)

Operands: None

Operand Stack: Before: …, arrayref, index, value >>>
After: …

Description: arrayref must be of reference type and must refer to an array whose components
are of short type. Furthermore, index and value must both be of int type. arrayref,
index, and value pop from the operand stack. The int value truncates to a short,
which stores as the array component at index.

Runtime
Exceptions:

This instruction throws a NullPointerException if arrayref is null.

This instruction throws an ArrayIndexOutOfBoundsException if index is not
within the bounds of the arrayref-referenced array.

http://www.go2pdf.com

Mnemonic: sipush

Operation: Push short.

Opcode: 17 (0x11)

Operands: byte1, byte2

Operand Stack: Before: … >>>
After: …, value

Description: Assemble unsigned byte1 and byte2 into an intermediate short, via
(byte1<<8)|byte2. Sign-extend the intermediate short to an int value, and then
push that value to the operand stack.

http://www.go2pdf.com

Mnemonic: swap

Operation: Swap the top two operand stack values.

Opcode: 95 (0x5F)

Operands: None

Operand Stack: Before: …, value2, value1>>>
After: …, value1, value2

Description: Swap the top two values on the operand stack.

value1 and value2 must not be of type double or long.

Notes: The JVM doesn’t provide an instruction that swaps operands of type double or
long.

http://www.go2pdf.com

Mnemonic: tableswitch

Operation: Access jump table by index and jump.

Opcode: 170 (0xAA)

Operands: <0-3 byte pad>, defaultbyte1, defaultbyte2, defaultbyte3, defaultbyte4, lowbyte1,
lowbyte2, lowbyte3, lowbyte4, highbyte1, highbyte2, highbyte3, highbyte4, jump
offsets…

Operand Stack: Before: …, index >>>
After: …

Description: This instruction is variable-length. Immediately after its opcode, between 0 and 3
null bytes (zero bytes, not the null object) insert as padding. The number of null
bytes is chosen so that the following byte begins at an address that is a multiple of
4 bytes from the start of the current method (the opcode of its first instruction).
Immediately after the padding follow bytes constituting three signed 32-bit values:
default, low, and high. Immediately following those bytes are bytes constituting a
series of high-low+1 signed 32-bit offsets. The value low must be less than or
equal to high. The high-low+1 signed 32-bit offsets are treated as a 0-based jump
table. Each of these signed 32-bit values constructs as
(byte1<<24)|(byte2<<16)|(byte3<<8)|byte4.

index must be of int type and pops from the operand stack. If index is less than
low or greater than high, a target address calculates by adding default to the
address of this instruction’s opcode. Otherwise, the offset at position index-low of
the jump table extracts. The target address calculates by adding that offset to this
instruction’s opcode address. Execution continues at the target address.

The target address that can be calculated from each jump table offset, as well as
the ones that can be calculated from default, must be the address of an opcode of
an instruction within the method that contains this tableswitch instruction.

Notes: The alignment required of the 4-byte operands of this instruction guarantees 4-
byte alignment of those operands if and only if the method containing this
instruction starts on a 4-byte boundary.

http://www.go2pdf.com

Mnemonic: wide

Operation: Extend local variable index by additional bytes.

Opcode: 196 (0xC4)

Operands: <opcode>, indexbyte1, indexbyte2

where <opcode> is one of aload, astore, dload, dstore, fload, fstore, iload,
istore, lload, lstore, or ret.

or

iinc, indexbyte1, indexbyte2, constbyte1, constbyte2

Operand Stack: Same as modified instruction

Description: wide modifies the behavior of another instruction. It takes one of two operands
formats, depending on the instruction being modified. The first format modifies
one of instructions aload, astore, dload, dstore, fload, fstore, iload, istore, lload,
lstore, or ret. The second format applies only to the iinc instruction.

In either case, the wide opcode is followed (in the compiled code) by the opcode
of the instruction wide modifies. In either format, unsigned bytes indexbyte1 and
indexbyte2 follow the modified opcode and assemble into a 16-bit unsigned index
to a local variable in the current stack frame, where the value of the index is
(indexbyte1<<8)|indexbyte2. The calculated index must be an index into the
current stack frame’s local variable array. Where wide modifies a dload, dstore,
lload, or lstore instruction, the index following the calculated index (index+1)
must also be an index into the local variable array. In the second format, unsigned
bytes constbyte1 and constbyte2 follow indexbyte1 and indexbyte2 in the code
stream. Those bytes assemble into a signed 16-bit constant, where the constant is
(constbyte1<<8)|constbyte2.

The widened bytecode operates as normal, except for the use of a wider index and,
in the case of the second operands format, the larger increment range.

Notes: Although wide is said to modify the behavior of another instruction, wide
effectively treats the bytes constituting the modified instruction as operands,
denaturing the embedded instruction in the process. In the case of a modified iinc
instruction, one of the logical operands of iinc is not even at the normal offset
from the opcode. The embedded instruction must never be executed directly; its
opcode must never be the target of any control transfer instruction.

http://www.go2pdf.com

